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Abstract

Double field theory is formulated in a T-duality invariant way. This the-
ory has unified the metric and two-form into the generalized metric, which
is O(D,D) tensor as well as the dilaton and the determinant of the metric
into the O(D,D) singlet. When the Scherk-Schwarz compactifition is con-
sidered, the fluxes in the the effective theory are turned on. In the case of
3-torus, the H-flux, f-flux, Q-flux and R-flux are linked by T-duality trans-
formation. The H-flux and f-flux are known as the geometric flux, while,
Q-flux and R-flux are referred to the non-geometric flux. In this disserta-
tion, the geometric meaning of Q-flux and R-flux are discussed and they
are the connection of winding derivative and the field-strength of bivector
in dual theory respectively.
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1. Introduction

In the standard model of particle physics, three forces in nature, such as elec-
tromagnetic, weak interaction, and strong interaction can be explained in the
quantum field theory. On the other hand, gravity can be described in terms of the
geometry of the spacetime known as the general relativity. At some energy scale,
one believes that gravity could be unified with the other three forces. However,
due to the nonrenormalizable property of gravity, it is difficult to combine gravity
into quantum theory. String theory is a alternative theory that might shine a way
to quantum gravity because it contains graviton in the spectrum. Moreover, the
concept of point particles is broken down, and replaced by the extended objects
called strings, when the length scale is closed to the Planck length.

Due to their different configuration from particles, strings admit more symme-
tries than those found in particle theory. The striking symmetry, which we will
discuss in this dissertation, is known as T-duality [1, 2]. When one of the dimen-
sion where strings propagate is compactified into a circle of circumference smaller
than the string length, strings can warp along this compact direction. Number of
times that strings curl along the circle give rise to the winding mode w. The mass
spectrum of closed string state with one circular direction is given by [3]

M2 =
(
N + N̄ − 2

)
+ p2 l

2
s

R2
+ w2R

2

l2s
, (1.1)

where N and N̄ are number operators for right and left-movers respectively, p is a
momentum mode along the circle, w is the winding mode and ls is a string length.
This closed string state also satisfies the level-matching condition

N − N̄ = pw. (1.2)

If the momentum mode p is exchanged with the winding mode w as well as the
quantity R/ls becomes ls/R, the mass spectrum (1.1) and the level-matching con-
dition (1.2) are still invariant. It implies that in the string point of view, strings
cannot distinguish between propagating along the circle with radiusR or 1/R. This
duality is known as T-duality which links the small space with the large space.
In general, when n dimensions are toroidal compactified, T-duality is generalized
into T-duality group O(n, n,Z).
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In [1], T-duality is realized as a symmetry of string field theory. In string field
theory on the torus, the winding modes are treated on an equal footing as the
momentum modes and this gives rise to coordinates that is dual to winding modes.
Although the full closed string field theory on torus is so complicated and cannot
be studied in more detail, the massless sector has been developed and it is known
as double field theory (DFT). In [4], double field theory is a T-duality invariant
theory and consists of massless fields in D dimension such as the metric gij, the
Kalb-Ramond two-form bij and the dilaton φ. These spectrums are referred to the
supergravity limit of string theory. The reason that it is called the double field
theory is because the coordinates in the compact directions are double. When the
theory is formulated on the product manifold such as Rd−1,1 × T n fields depend
on the coordinates of Rd−1,1 × T 2n. This T 2n consists of the original torus T n and
another torus T n corresponding to winding coordinates.

As we mention before, T-duality symmetry originating from toroidal compacti-
fication is given by O(n, n,Z). In [5,6], it is useful to double the coordinates in the
d-dimensional non-compact directions and it leads to the continuous O(d, d) sym-
metry in these direction. Moreover, if the DFT is formulated on background R2D,
there is a continuous O(D,D) symmetry. Compactification on n-torus breaks the
O(D,D) symmetry into O(d, d) × O(n, n,Z). If the coordinates in non compact
directions are restricted to the original set of coordinates, O(d, d) symmetry group
is then broken further to O(1, d− 1) Lorentz group. Therefore, DFT has included
the Lorentz group as well as T-duality group within its framework.

In order to have T-duality invariant theory, fields in DFT can be rearranged into
the O(D,D) representation. For instance, the metric gij and the two-form bij have
been unified into O(D,D) tensor HMN known as the generalized metric, where
M,N are O(D,D) indices. The dilation φ and the determinant of the metric g have
been combined into an O(D,D) singlet d, such that e−2d =

√
ge−2φ. Additionally,

the generalized metric arises when the first quantisation is considered in the level
of string world sheet [2]. Not only the fields, but also the coordinates and dual
coordinates are also represented into the generalized coordinates XM = (x̃i, x

i).
In DFT, there is another metric which is referred to the O(D,D) invariant metric
ηMN . The role of this metric ηMN is for raising and lowering the O(D,D) indices.

Furthermore, fields in DFT should satisfy the constraint arising from the level-
matching condition L0 − L̄0 = 0. In terms of field representation, it implies that
fields A are annihilated by ∂i∂̃

i(A) = 0. This constraint is know as the weak
constraint. Additionally, the generalized diffeomorphisms is also considered in
order to construct the invariant action. The gauge transformation in DFT is given
by the generalized Lie derivative generated by a vector field ξi and a one-form ξ̃i.
These gauge parameters can be rearranged in to O(D,D) vector representation
such that ξM = (ξ̃i, ξ

i). in the limit when the theory is independent of dual
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coordinates, the gauge transformation has reduced into ordinary diffeomorphisms
and two-form gauge transformation [3–5,7–9]. For the closure of the generalized Lie
derivative, the constraint that is stronger than the weak constraint is required [10]
and known as the strong constraint. When the strong constraint is imposed, field
as well as products of fields are vanished by the condition ∂i(A)∂̃i(B) = 0, where A
and B are fields and gauge parameters. The result of strong constraint has reduced
the dependency on coordinates from 2D dimension into D dimensional subspace.
Therefore, fields in DFT with strong constraint are manifestly dependent on D
dimensional spacetime.

In [5], the background independent action has been constructed and taken the
form

S =

∫
dx dx̃ e−2d

{
− 1

4
gikgjlDpEklDpEij +

1

4
(DjEikDiEjl + D̄jEkiD̄iElj)

+ (DidD̄jEij + D̄idDjEji) + 4DidDid
}
, (1.3)

where derivative Di and D̄i are defined by

Di ≡
∂

∂xi
− Eik

∂

∂x̃k
, D̄i ≡

∂

∂xi
+ Eik

∂

∂x̃k
, (1.4)

and the field Eij is defined as Eij = gij + bij. In this action, indices are raising and
lowering with the metric gij and each terms is invariant under O(D,D) T-duality
group. The gauge transformations of fields are given by

δξEij =Diξ̃j − D̄j ξ̃i + ξM∂MEij +DiξkEkj + D̄jξ
kEik, (1.5)

δξd =− 1

2
∂Mξ

M + ξM∂Md, (1.6)

where ξM∂M = ξi∂i + ξ̃i∂̃
i and ∂Mξ

M = ∂iξ
i + ∂̃iξ̃i. However, proving the gauge

invariance of this action is so difficult and requires long calculation.
Therefore, in [9], a new action that related to (1.3) has been created from the

generalized metric HMN and field d

S =

∫
dx dx̃ e−2d

{
4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+1
8
HMN∂MHKL∂NHKL − 1

2
HMN∂MHKL∂KHNL

}
. (1.7)
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The gauge transformation ofHMN and d are given by the generalized Lie derivative

δξHMN = LξHMN =ξP∂PHMN + (∂Mξ
P − ∂P ξM)HPN + (∂Nξ

P − ∂P ξN)HMP ,
(1.8)

δξ(e
−2d) = Lξe−2d =∂M(ξMe−2d). (1.9)

From the action (1.7), the O(D,D) structure of each terms is manifest and proving
gauge invariant property is simpler than (1.3).

From the string theory point of view, the dimensions of spacetime are 10 and
26 for superstring and bosonic string theory respectively. In order to make a
connection with a real world defined in 4 dimensional spacetime, some dimensions
should be compactified. The Kaluza-Klein supergravity has been discussed in [11].
Due to the compactification, there exists a mass gap of which size is inversely
proportional to the compactified scale. If the energy scale is less than the mass
gap, massive modes can be truncated and left us with an effective theory containing
only massless states. However, compactification on some internal space might lead
to the inconsistent theory after all massive modes are truncated such as Calabi-Yau
compactification. Scherk-Scwarz (SS) compactification [12] is one of the consistent
compactification [11,13–15]. In SS compactification, the internal manifold is locally
isomorphic the group manifold and the fluxes are induced after compactification.
These fluxes can be obtained from the twists which can be interpreted as the
vielbein on the compact space.

The case in which the compact background is flat 3-torus with non-vanishing
H-flux is a good illustrate of the flux compactification [3, 8, 16–18]. By T-duality
transformation in one of isometry directions of these backgrounds, H-flux has been
transformed into f-flux. These H and f-fluxes have the geometrical meanings which
is the three-form flux and Levi-Civita spin connection in the compact space. More-
over, if T-duality is performed in the remaining isometry direction, f-flux can be
transformed in to Q-flux which is globally ill-defined. Now, there is the one di-
rection left, however, this is a non-isometry direction. If one performs T-duality
transformation in this direction, R-flux will be turned on. However, R-flux is not
locally well-defined since T-duality in non-isometry direction exchanges coordi-
nates in that direction with dual coordinates. These problems occur because the
metric gij, the two-form bij and the dilaton φ as well as the concept of dual coordi-
nates are not well-defined on these background. In [19], these problems are solved
by replacing gij, bij and φ by g̃ij, β

ij and φ̃ and using DFT framework as we will
explain it more in Chapter 4 and 5.

The main objective of this dissertation is to study the meaning of non-geometric
fluxes. By using fields that parameterized in terms of g̃ij, β

ij and φ̃, the definition
of fluxes can be obtained [3, 20]. The R-flux can be identified as field strength in
the dual theory, and Q-flux can be thought of as the connection corresponding to
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the winding derivative [16,21].
This dissertation is organized as follows. In chapter 2, we will follow [2, 4, 7]

and review how the O(D,D) structure emerging from the spectrum and level-
matching condition in world-sheet prospective. In chapter 3, we introduce the basic
knowledge of DFT base on refference [3, 4, 7, 8], such as, O(D,D) representation,
the generalized diffeomorphism have been discussed as well as the important of
strong constraint for closure of the generalise Lie derivative. In chapter 4, the
SS dimensional reduction and gauge symmetry that arise in the effective theory
are provided from [3, 8, 22]. Moreover, the example of T-duality on 3-torus is
introduced. In chapter 5, by referring to [3, 16, 20, 23], the covariant fluxes are
calculated. Furthermore, the geometric interpretation of non-geometic fluxes is
discussed and the we will briefly explain the gauged DFT and orbit of fluxes.
Computational details are provided in the appendices. In appendix A, we will show
how the generalized Lie derivative is reduced into the conventional Lie derivative
and two-form gauge transformation when the fields and gauge parameters are
independent of the dual coordinates. In appendix B, we will show the commutation
relation between two generalized Lie derivatives and show how strong constrain
is imposed in order to have a closure relation. In appendix C, the non-vanishing
Jacobiator of the generalized Lie derivative that leads to the trivial transformation
has been provided. In appendix D, the full calculations of fluxes are provided. In
appendix E, we will show that the commutation relation of winding derivative gives
the R-flux and Q-flux. Lastly, the detail of constructed of winding connection and
its non-covariant part are illustrated in appendix F.
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2. Target Space Duality

The intrigue feature of string objects is that strings can wrap along the compact
dimension. As a result, it leads to the existence of winding modes that have not
been seen in particle theory. Along with the momentum mode, there exists a
symmetry that exchanges between momentum modes and winding modes known
as “Target Space Duality” or T-Duality. In this chapter, string theory on n-torus
background is introduced and this leads to the emergence of T-duality.

2.1. Toroidal compactification

Following from [2], let us consider string theory in D-dimensions with n direc-
tions are toroidal compactified. The target space manifold can be expressed as
a product between d-dimensional Minkowski space-time and n-torus, such that
Rd−1,1 × T n where D = n + d. In this case, the critical string theory, where no
Weyl anomalies, is considered. That means it can be either D = 26 for bosonic
string theory or D = 10 for superstring theory. The string action is given by [4]

S = − 1

4π

2π∫
0

dσ

∫
dτ{√γγαβ∂αX i∂βX

jGij + εαβ∂αX
i∂βX

jBij}, (2.1)

where γαβ is a world-sheet metric, εαβ is an antisymmetric tensor with ε01 = −1,
Gij is a constant target space metric, and Bij is a constant target space two-form.

In action (2.1), the string coordinates X i are split into non-compact directions
represented by Xµ and compact directions represented by Y m,

X i = {Y m, Xµ}, (2.2)

where µ = 0, . . . , d− 1 and m = 1, . . . , n.
By using a notation and following from [2, 4], the constant background metric

Gij with an inverse metric Gij satisfying GijGjk = δik is written as

Gij =

(
Ǧmn 0

0 ηµν

)
, (2.3)
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where Ǧmn is a flat metric on n-torus T n and ηµν is a Minkowski metric on Rd−1,1.
Similarly, the constant background two-form Bij is written as

Bij =

(
B̌mn 0

0 0

)
. (2.4)

For later convenience, the background matrix Eij [2] is defined by

Eij ≡ Gij +Bij =

(
Ěmn 0

0 ηµν

)
, (2.5)

where Ěmn = Ǧmn + B̌mn.
In this case, it is restricted to the closed string theory, so that the string bound-

ary conditions in compact and non-compact directions are given by

Y m(σ + 2π) = Y m(σ) + 2πwm, (2.6)

Xµ(σ + 2π) = Xµ(σ), (2.7)

respectively, where wm is known as a winding number and takes an integer value.
It represents the number of times that string wraps along Y m coordinate.

Recall the action (2.1), since the critical string theory is considered, the string
world-sheet metric can be chosen such that it is a Minkowski metric in 2-dimension,

γαβ = ηαβ. (2.8)

By substituting this metric in (2.1), the action becomes

S = − 1
4π

2π∫
0

dσ
∫
dτ{ηαβ∂αX i∂βX

jGij + εαβ∂αX
i∂βX

jBij},

= − 1
4π

2π∫
0

dσ
∫
dτ{−Ẋ iẊjGij +X ′iX ′jGij − 2Ẋ iX ′jBij}, (2.9)

where˙and ′ represent derivatives with respect to world-sheet time-like coordinate τ
and space-like coordinate σ, respectively. The canonical momentum Pi conjugated
to the coordinate X i is defined as

Pi =
δS

δẊ i
. (2.10)

Therefore, from the action (2.9), the canonical momentum is given by

2πPi(σ, τ) = GijẊ
j(σ, τ) +BijX

′j(σ, τ). (2.11)
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A momentum excitation pi from the canonical momentum is defined by

pi =

2π∫
0

dσPi. (2.12)

Recall that from the Kaluza-Klein theory, the momentum excitation along the
compact dimension pm is quantised and normalised such that it takes an integer
value. The reason for the Kaluza-Klein momentum must be quantised is because
exp (ipmY

m) must be a single value function.
The expansion of modes for coordinate X i is given by [4]

X i(σ, τ) = xi + wiσ + τGij(pj −Bjkw
k) +

i√
2

∑
n6=0

1

n

(
ᾱine−in(τ+σ) + αine−in(τ−σ)

)
,

(2.13)

where xi is the centre of mass of string, αin and ᾱin are the n-mode oscillators for
right-mover and left-mover, respectively. In this expression, there is no winding
number in non-compact directions,

wi = {wm, 0} (2.14)

By substituting the coordinate expression (2.13) into the conjugate momentum
expression (2.11), it becomes

2πPi = pi +
1√
2

∑
n 6=0

(
Eijᾱ

i
ne−in(τ+σ) + ET

ijα
i
ne−in(τ−σ)

)
, (2.15)

where Eij is the background matrix defined in (2.5).

2.2. Hamiltonian and level-matching condition

In order to determine the spectrum of the string theory, the Hamiltonian should
be determined first and its definition is given by

H =

2π∫
0

dσH(σ, τ), (2.16)
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where H(σ, τ) is a world-sheet Hamiltonian density given by

H(σ, τ) = PiẊ
i +

1

4π

(
−Ẋ iẊjGij +X ′iX ′jGij − 2Ẋ iX ′jBij

)
. (2.17)

By substituting the coordinate expression (2.13) and the momentum expression
(2.15) into the above equation, the Hamiltonian density becomes

4πH =
(
X ′ 2πP

)
H(E)

(
X ′

2πP

)
, (2.18)

where H(E) is a 2D× 2D symmetric matrix and constructed from the metric Gij

and the two-form Bij. It is known as the generalized metric and takes the form

H(E) =

(
Gij −BikG

klBlj BikG
kj

−GikBkj Gij

)
. (2.19)

Therefore, the Hamiltonian can be calculated by substituting the expression of
coordinate (2.13) and canonical momentum (2.15) into the Hamiltonian density
(2.18). The result is

H =
1

2
ZTH(E)Z +

1

2

∑
n6=0

(
ᾱi−nGijᾱ

i
n + αi−nGijα

j
n

)
. (2.20)

However the Hamiltonian (2.20) is not in the normal-ordering due to ambiguous
order in the second term. By performing normal-ordering and discard the constant
from the normal-ordering, the Hamiltonian becomes

H =
1

2
ZTH(E)Z +N + N̄ , (2.21)

where Z is a generalized momentum, that unifies the momentum excitations pi
with the winding modes wi, and defined by

Z =

(
wi

pi

)
, (2.22)

and N , N̄ are number operators for right and left-moving modes, and written by

N =
∑
n>0

(
αi−nGijα

j
n

)
, (2.23)

N̄ =
∑
n>0

(
ᾱi−nGijᾱ

i
n

)
. (2.24)
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In string theory, the physical state |φ〉 satisfies the Virasoro constraints

L0 − a|φ〉 = 0, Lm|φ〉 = 0, (2.25)

L̄0 − a|φ〉 = 0, L̄m|φ〉 = 0,withm > 0. (2.26)

These conditions give rise the level-matching condition which takes the form,

L0 − L̄0|φ〉 = 0. (2.27)

After substitute the expression of L0 and L̄0, the level-matching condition becomes

L0 − L̄0 = N − N̄ − piwi = 0. (2.28)

As a result, the level-matching condition gives

N − N̄ = piw
i,

=
1

2
ZTηZ, (2.29)

where Z is the generalized momentum defined in (2.22) and η is a constant matrix
which will play a major role in the next section and defined as

η =

(
0 1

1 0

)
, (2.30)

with 1 is an identity D ×D matrix.

2.3. T-duality and O(n, n,Z)
From the previous section, the Hamiltonian (2.21) and the level-matching con-

dition (2.29) are obtained. Now let us consider the transformation symmetry of
the generalized momentum Z such that

Z → Z = hTZ ′, (2.31)

where h is a transformation matrix that mixes wm and pm after operating on
the generalized momentum. The requirement of this transformation is that the
level-matching condition and the Hamiltonian are preserved. Therefore, from the
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level-matching condition and (2.31), it gives

N − N̄ =
1

2
Z ′TηZ ′ =

1

2
ZTηZ

=
1

2
Z ′ThηhTZ ′. (2.32)

From the above relation, the transformation matrix h must preserve η

hηhT = η. (2.33)

That means h is an element of O(D,D,R) group and η is an O(D,D,R) invariant
metric. Since we must encounter this group several time in this report, let us
introduce the basic feature of this group.

The element h belongs O(D,D,R) group if it preserves the O(D,D,R) invariant
metric η

O(D,D,R) =
{
h ∈ GL(2D,R) : hηhT = η

}
. (2.34)

Let a, b, c, and d be D × D matrices, h can be represented in terms of these
matrices such that

h =

(
a b
c d

)
. (2.35)

The condition in which h preserves η gives the conditions for a, b, c, and d, namely,

aT c+ cTa = 0, bTd+ dT b = 0, and aTd+ cT b = 1. (2.36)

From (2.21), let us consider the first term which is

H0 =
1

2
ZTH(E)Z. (2.37)

This term which is invariant underO(D,D,R) induces the transformation property
for H(E)

Z ′TH(E ′)Z ′ = ZTH(E)Z,

= Z ′ThH(E)hTZ ′. (2.38)

From the above equation, the generalized metric transforms as

H(E ′) = hH(E)hT . (2.39)

From (2.39), it leads to the transformation rule for E by the following method.

11



First, the generalized metric is formulated in terms of a vielbein hE which is an
O(D,D,R) element

H(E) = hEh
T
E, (2.40)

and hE is defined by

hE =

(
e B(eT )−1

0 (eT )−1

)
, (2.41)

where e is a vielbein of the metric G = eeT . Next, the action of O(D,D,R) group
element h on D ×D matrix F is defined by

h(F ) = (aF + b)(cF + d)−1. (2.42)

From this group action, the background matrix E is obtained from

E = hE(1) (2.43)

From (2.39), the transformed vielbein h′E is obtained from the original hE

hE′ = hhE. (2.44)

Therefore, the transformation rule for E is obtained by

E ′ = hE′(1) = hhE(1) = h(E) = (aE + b)(cE + d)−1. (2.45)

In order that the full Hamiltonian is invariant under O(D,D,R) transformation,
N , and N̄ should be invariant under this transformation. From the transformation
rule for E (2.45), the symmetric part of E ′ is corresponding to G′, then we get the
relation between G and G′ [1]

(d+ cE)TG′(d+ cE) = G, (2.46)

(d− cET )TG′(d− cET ) = G. (2.47)

After the transformation of the metric is obtained, and using the commutation
relations between the oscillator

[αim(E), αjn(E)] = [ᾱim(E), ᾱjn(E)] = mGijδm+n,0. (2.48)

The transformation rules for αim and ᾱim are obtained [1]

αn(E) → (d− cET )−1αn(E ′), (2.49)

ᾱn(E) → (d+ cE)−1ᾱn(E ′). (2.50)
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Therefore, the number operators are invariant. This means the full spectrum is
invariant under O(D,D,R).

Moreover, there is another symmetry which is known as the world-sheet parity.
The operation of the symmetry flips the sign of the two-form (B → −B) and
exchanges the right-moving and left-moving oscillators into each other as

αn ↔ ᾱn. (2.51)

The full Hamiltonian is also invariant under this action.
As we mention before, from the restriction that wm and pm take the discrete

values due to the boundary condition of n-dimensional toroidal space, so that
the symmetry group should be restricted to O(n, n,Z) subgroup of O(D,D,R).
This O(n, n,Z) is known as the the T-duality group in string theory. However,
it is useful to represent h ∈ O(n, n,Z) in terms of O(D,D,R) representation and
represented as

h =

(
a b
c d

)
, (2.52)

with

a =

(
ǎ 0
0 1

)
, b =

(
b̌ 0
0 0

)
, c =

(
č 0
0 0

)
, d =

(
ď 0
0 1

)
, (2.53)

where ǎ, b̌, č, and ď are n×n matrices and can be rearranged in terms of O(n, n,Z)
element ȟ as

ȟ =

(
ǎ b̌

č ď

)
. (2.54)

In this report, the representation of O(D,D) and O(n, n) are both used.

2.4. Example of O(n, n,Z) transformation

In previous section, the string theory on the space with n dimension are toroidal
compactified background leads to the existence T-duality O(n, n,Z) group. In this
section, the examples of the O(n, n,Z) element are provided. At the point, one
wonders that every O(n, n,Z) can be used to generate transformation. However,
the answer is no because there are some group elements that break the upper
triangle of the vielbein (2.41) after transformation. These kinds of group elements
do not give the metric and the two-from in the transformed theory, whereas they
introduce the bivector βij. So that in this section, we will focus only on group
elements that preserve the upper triangle of (2.41).

13



Integer theta-parameter shift Θmn

The firstO(n, n,Z) element that we would like to introduce is the theta-parameter
shift Θmn. In the string-world sheet action, the term that correspond to the con-
stant two-form in fact gives the total derivative. That means if the two-form is
shifted by the constant integer, it will not contribute to the path integral because
it gives only topological contribution. On the other hand, this transformation can
be thought of a two-form gauge transformation such that

Bmn → Bmn + Θmn. (2.55)

The group elements that correspond to the theta-parameter shift are

ȟΘ =

(
1 Θ
0 1

)
, (2.56)

where Θmn ∈ Z and Θmn = −Θmn.

Basis change A

The n-torus T n is quotient space of Rn with lattice Λ. The transformation of
lattice Λ by GL(n,Z) doesn’t change the torus. Thus, the spectrum is invari-
ant under this transformation. The group element of this transformation can be
represented as

ȟA =

(
A 0
0 (AT )−1

)
, (2.57)

where A ∈ GL(n,Z).

Factorized duality Tk

The factorized duality Tk is corresponding to the exchange the radiusRk → 1/Rk

along the circle in Y k direction and leaves the other direction unchanged. This
gives rise to the interchange between the winding mode and the momentum mode
in this direction,

wk ↔ pk. (2.58)

In the literature, this transformation is referred to the T-duality along Y k direction.
The group elements that represent this transformation are

ȟTk =

(
1− ek ek
ek 1− ek

)
, (2.59)

14



where ek is a matrix that has zero component everywhere except kk component.
Not only the winding mode and momentum excitation are exchanged, but also
some component of the metric and 2-from in the compact direction. This is know
as the Bushcer rules [24].

Inversion

The transformation that interchange Rk → 1/Rk have been previously discussed.
If one try to do n successive factorized T-duality in all n-dimensional compact
space, it gives the inversion of the background matrix E,

Ě = Ǧ+ B̌ → Ě ′ = Ǧ′ + B̌′ = E−1. (2.60)

The group element is represented by the O(n, n) invariant metric

ȟI =

(
0 1

1 0

)
. (2.61)
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3. Double Field Theory

In the previous chapter, the string theory on the torus background have admitted
a new symmetry called T-duality that have not seen in particle theory. This hints
an idea about the theory that cooperates with T-duality. Double field theory is a
T-duality invariant theory of the low energy sector of string theory on the compact
space. In the other word, double field theory is a T-duality symmetrization of the
supergravity.

3.1. Supergravity

Before discuss more about double field theory, let us brief the story about the
supergravity which is the massless spectrum in String theory. From [3, 25], the
common spectra, that are found in closed string theory, consist of the metric
tensor gij, the Kalb-Ramond two-form bij, and the dilaton φ. These states are
created from the closed string states

αi−1ᾱ
j
−1|0, p〉. (3.1)

The symmetric traceless part of (3.1) gives the metric tensor gij. On the other
hand, the antisymmetric part gives the two-form bij. The trace part is transformed
as a scalar called the dilaton φ. In the superstring theory, these states are closed
string states in the NS-NS sector.

The NS-NS supergravity action takes the form [25]

S =

∫
dDx
√
ge−2φ

[
R + 4∇iφ∇iφ− 1

12
H ijkHijk

]
, (3.2)

where R is a Ricci scalar obtained from the derivative of the metric gij and Hijk

is a three-form field strength of two-form bij and defined by

Hijk = 3∂[ibjk], (3.3)

and it satisfies the Bianchi identity,

∂[iHjkl] = 0. (3.4)
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The equations of motion obtained from the action (3.2) are given by [25]

Rij −
1

4
Hi

mnHjmn + 2∇i∇jφ = 0, (3.5)

∇mHmij − 2 (∇mφ)Hmij = 0, (3.6)

R + 4
(
∇i∇iφ−∇iφ∇iφ

)
− 1

12
HijkH

ijk = 0. (3.7)

From the string point of view, these equations can be derived from the vanishing
of β equations at one-loop level and imply the Weyl invariant theory.

The action (3.2) is invariant under local gauge transformations such as diffeo-
morphisms and two-form gauge transformation.

Diffeomorphisms is an active coordinate transformation. It is generated by
the vector field λi. The field contents in NS-NS transform as

δgij = Lλgij = λk∂kgij + gkj∂iλ
k + gik∂iλ

k, (3.8)

δbij = Lλbij = λk∂kbij + bkj∂iλ
k + bik∂iλ

k, (3.9)

δφ = Lλφ = λk∂kφ, (3.10)

where Lλ is a Lie derivative along the vector field λi and it is defined on the
arbitrary vector field V i as the Lie bracket such that

LλV
i = [λ, V ]i = λj∂jV

i − V j∂jλ
i. (3.11)

The diffeomorphism invariant implies that the laws of physics do not change under
coordinate transformation.

Kalb-Ramond two-form gauge transformation is generated by one-form

field λ̃i such that

δbij = ∂iλ̃j − ∂jλ̃i. (3.12)

Under this transformation, the three-form Hijk is invariant.

3.2. O(D,D) representation

Double field theory gives a way to think about T-duality invariant theory at the
level of supergravity. From the previous chapter, when n-dimensions are n-torus,
the T-duality group O(n, n,Z) is emerging from the invariance of the spectrum
and the level-matching condition. However, it is useful to think of it as embedded
subgroup of O(D,D) group. Therefore, the T-duality group is global O(D,D)
group. In order to formulate O(D,D)-invariant theory, the O(D,D)-invariant
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action should be constructed and the supergravity degrees of freedom should be
rearranged into the O(D,D) tensor.

Generalized metric and scalar

The supergravity fields consist of the metric gij, the Kalb-Ramond two-form
bij, and the dilaton field φ. At this point, one wonders how these fields can be
rearranged into O(D,D) tensor. From the previous chapter, we have O(D,D)
tensor HMN called the generalized metric which is constructed from the metric
and two-form. Therefore, the metric gij and the two-form bij should be combined
into the generalized metric HMN , which takes the form

HMN =

(
gij − bikgklblj bikg

kj

−gikbkj gij

)
, (3.13)

where M , N are O(D,D) curved indices which run from 1 to 2D. The indices of
O(D,D) tensor can be raising or lowering by the O(D,D) invariant metric ηMN

and ηMN , which are defined as

ηMN =

(
0 δi

j

δi j 0

)
, ηMN =

(
0 δi j
δi
j 0

)
, (3.14)

Therefore,

HMN = ηMPηNQHPQ, andHMPHPN = δM
N . (3.15)

Moreover from [2], the dilaton φ along with the determinant of the metric g =
det gij can be combined into the O(D,D) singlet d defined as

e−2d =
√
ge−2φ. (3.16)

Generalized coordinates

Not only the field contents should be written in terms of the O(D,D) tensor,
but also the coordinates xi. However, the vector representation of O(D,D) has
2D dimensions, whereas the dimensions of coordinates xi are just D. From the
existence of the winding mode in the previous chapter, one can introduce a new set
of coordinates x̃i that are dual to the winding modes wi. Therefore, by combining
the coordinates xi with the coordinates x̃i, the generalized coordinates XM can be
obtained

XM = (x̃i, x
i). (3.17)
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These generalized coordinates induce the generalized derivatives

∂M =

(
∂

∂x̃i
,
∂

∂xi

)
. (3.18)

Additionally, the fields in double field theory should be dependent on the gen-
eralized coordinates XM ,

HMN (X) , d (X) . (3.19)

O(D,D) transformation

Since the generalized coordinates are in the fundamental representation ofO(D,D)
group, under O(D,D) transformation, the generalized coordinates transform as

XM → hM NX
N , (3.20)

where hM N ∈ O(D,D). As a result, this transformation mixes the coordinates xi

with the dual coordinates x̃i.
Moreover, the generalized fields transform under O(D,D) transformation as

HMN(XK) → hM
PhN

QHPQ

(
hK LX

L
)
, (3.21)

d(XK) → d(hK LX
L). (3.22)

Notice that if h is corresponding to the T-duality in an isometry direction, the
transformation (3.21) gives the Buscher rule for gij, and bij as [24]

gkk →
1

gkk
, gki → −

bki
gkk

, gij → gij −
gkigkj − bkibkj

gkk
,

bki → −
gki
gkk

, bij → bij −
gkibkj − bkigkj

gkk
. (3.23)

The transformation (3.21) also includes T-duality transformation along non-
isometry direction, which have not been seen in the ordinary supergravity. Since
in supergravity limit, the fields are restricted to coordinate xi and by performing
T-duality in non-isometry direction such as xk, xk swaps with the dual coordinate
x̃k. That’s why the T-duality in non-isometry direction cannot be done in the
supergravity framework, however, in DFT framework, it is fine since xi and x̃i are
well-defined.
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O(D,D) invariant action

After we have all ingredients, which are represented in terms of O(D,D) tensor,
the O(D,D) invariant action can be constructed. In [9], the DFT action can be
written in terms of the generalized metric, scalar, and derivative such that

S =

∫
d2DXe−2dR, (3.24)

where

R = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+1
8
HMN∂MHKL∂NHKL − 1

2
HMN∂MHKL∂KHNL, (3.25)

is known as the generalized scalar curvature. Each term in this scalar curvature is
an O(D,D) invariant quantity because all indices are totally contracted. Moreover,
under generalized gauge transformation in which we will consider later in the
generalized Lie derivative section, this curvature scalar is transformed as a scalar.
This indicates that R is a generalized scalar. Additionally, when the fields in
action (3.24) are independent of the dual coordinates x̃i, this action becomes the
supergravity action (3.2) [7].

3.3. Strong constraint

From the level-matching condition (2.29), it implies that fields in DFT should
satisfy the constraint

ηMN∂M∂N(A) = 0, (3.26)

(3.27)

where A are any fields. This constraint is known as the weak constraint. However,
when the generalized Lie derivative, which we will discuss in the next section, are
considered. The gauge algebra is closed if there is another constraint such that

ηMN∂M(A)∂N(B) = 0, (3.28)

where A and B are fields and gauge parameters. This constraint (3.28) is called
the strong constraint.

As a result of the strong constraint, the field configurations depend only on the
D-subspace coordinates, which can be only xi, or only x̃i, or the combination of
xi and x̃i related by O(D,D) transformation. The subspace is called the totally
null subspace [26]. Therefore, DFT with strong constraint is formulated on D-
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dimensional totally null subspace. When the section is corresponding to only xi,
this section is called the supergravity frame [3].

3.4. Generalized Lie derivative

From the NS-NS supergravity fields, the metric gij and the Kalb-Ramond two-
form bij transform under diffeomorphisms (3.10) and two-form gauge transforma-
tion (3.11). The supergravity action is invariant under these gauge transforma-
tions. Since in DFT, the metric gij and two-from bij are unified into the generalized
metric HMN , the diffeomorphisms and two-from gauge transformation should be
combined and give a generalized gauge transformation.

Recall that the diffeomorphisms and two-form gauge transformation are gener-
ated by a vector λi and a one-form λ̃i, respectively. These parameters in fact can
be combined into a O(D,D) vector called generalized gauge parameters

ξM =
(
λ̃i, λ

i
)
. (3.29)

In [7, 9, 23], there is a natural way to combine gauged transformation (3.10)
and (3.11) into the generalized gauge transformation with parameter ξM . This
transformation is known as the generalized Lie derivative and defined as

LξAM ≡ ξP∂PAM +
(
∂Mξ

P − ∂P ξM
)
AP , (3.30)

LξBM ≡ ξP∂PB
M +

(
∂MξP − ∂P ξM

)
BP , (3.31)

where AM and BN are generalized vectors. From the generalized Lie derivatives
(3.30) and (3.31), the upper and the lower vector indices are treated in the sym-
metric ways

From this definition, the generalized Lie derivative of the generalized metric
HMN and the O(D,D) singlet e−2d are given by [9]

LξHMN = ξP∂PHMN +
(
∂Mξ

P − ∂P ξM
)
HPN +

(
∂Nξ

P − ∂P ξN
)
HMP , (3.32)

Lξ
(
e−2d

)
= ∂M

(
ξMe−2d

)
. (3.33)

From (3.33), e−2d is transformed as a density so that it is the generalized den-
sity. Moreover, when the strong constraint is imposed in supergravity frame, the
transformation (3.32) reproduces the gauge transformation of the metric gij and
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two-form bij as (see appendix A)

Lξgij = Lλgij, (3.34)

Lξbij = Lλbij + (∂iλ̃j − ∂jλ̃i), (3.35)

where Lλ is an ordinary Lie derivation with parameter λi. It implies the generalized
Lie derivative have unified the ordinary Lie derivative with the two-from gauge
transformation.

The generalized Lie derivative of ηMN is given by

LξηMN = ξP∂PηMN +
(
∂Mξ

P − ∂P ξM
)
ηPN +

(
∂Nξ

P − ∂P ξN
)
ηMP ,

= ∂MξN − ∂NξM + ∂NξM − ∂MξN ,
= 0. (3.36)

As a result, the generalized Lie derivative preserves O(D,D) invariant metric.
Additionally, in DFT, there exists a trivial transformation, which is generated

by the generalized derivative of some function χ, such that

ξM = ∂Mχ = (∂̃iχ, ∂
iχ). (3.37)

From this gauge parameters, (3.30) and (3.31) give

Lξ=∂χAM = ∂Pχ∂PAM +
(
∂M∂

Pχ− ∂P∂Mχ
)
AP = 0 (3.38)

Lξ=∂χBN = ∂Pχ∂PB
N +

(
∂N∂Pχ− ∂P∂Nχ

)
BP = 0, (3.39)

where the first term of each transformations (3.38) and (3.39) vanishes because of
the strong constraint.

Moreover, if one consider the generalized Lie derivative of the scalar curvature
(3.25), it is transformed as a scalar [9]

LξR = ξM∂MR. (3.40)

From the form of the scalar curvature (3.25), each term is an O(D,D) invariant,
however, only the full combination of all terms is a generalized scalar. Therefore,
the action (3.24) is invariant under the generalized diffeomorphisms.

The commutation relation between the generalized Lie derivative is given by
[8–10] (see appendix B)

[Lξ1 ,Lξ2 ] = L[ξ1,ξ2]C , (3.41)
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where the C-bracket [. . . , . . . ]C is defined as

[ξ1, ξ2]MC ≡ ξN1 ∂Nξ
M
2 −

1

2
ξ1N∂

MξN2 − (1↔ 2). (3.42)

Moreover, from appendix B, it implies that in order to have a closure of transfor-
mation (3.41), the strong constraint is necessary. When the strong constraint
is imposed in the supergravity frame, the C-bracket has become the Courant
bracket [27].

From the definition of C-bracket, one can show that

1

2

(
Lξ1ξM2 − Lξ2ξM1

)
= [ξ1, ξ2]MC . (3.43)

Moreover, the symmetric part gives

1

2

(
Lξ1ξM2 + Lξ2ξM1

)
=

1

2
∂M
(
ξP1 ξ2P

)
. (3.44)

Following from (3.41), it leads to

[[Lξ1 ,Lξ2 ] ,Lξ3 ] + cyclic = L[[ξ1,ξ2]C ,ξ3]C+cyclic. (3.45)

That means the generalized Lie derivative has a non-vanising Jocabiator given by

JM(ξ1, ξ2, ξ3) = [[ξ1, ξ2]C , ξ3]MC + cyclic. (3.46)

However, this Jacobitor generates trivial gauge transformation since it is propor-
tional to the total derivative [8, 26] (see appendix C)

JM(ξ1, ξ2, ξ3) =
1

6
∂M
(

[ξ1, ξ2]PC ξ3P + cyclic
)
. (3.47)

Therefore, the general Lie derivative satisfies the Jacobi identity up to the trivial
gauge transformation.
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4. Dimensional Reduction

The critical dimension of string theory is D = 26 for bosonic string theory and
D = 10 for superstring theory. In order to make a connection with phenomenology,
one considers the dimensional reduction. The Kaluza-Klein reduction on n-torus
with truncation of massive modes gives U(1)2n gauge symmetry. However, it is
more interesting if the non-abelion gauge symmetry is obtained. Scherk-Schwarz
compactification provides the low-dimensional theory with non-abelion gauge sym-
metry, and also the scalar potential. In this chapter, the SS compactification as
well as the concept of flux arising from dimensional reduction are discussed.

4.1. Scherk-Schwarz compactification

Following from [12,22], let us review the Scherk-Schwarz compactification. Con-
sider a theory on D-dimensional manifold with n-dimensional compact submani-
fold χ. Let ym be a coordinate chart and ua is a non-vanishing one-from which is
defined globally on χ and takes the form

ua = ua m(y)dym, (4.1)

where the vielbein ua m is known as a twist. The internal components of tensor
field Aijk...l are dependent on internal coordinates ym via the vielbein ua m

Amnp...q(x, y) = Aabc...d(x)ua m(y)ub n(y)uc p(y) . . . ud q(y), (4.2)

where Aabc...d(x) will be a scalar field in effective field theory.
Moreover, the vielbein is satisfying the structure equation,

dua +
1

2
fa bcu

b ∧ uc = 0, (4.3)

where fa bc is defined by

fa bc = 2u[c
m∂mu

a
nub]

n. (4.4)

For a group manifold G, there exists a structure equation known as the Maurer-
Cartan’s structure equation [28]. Therefore, if fa bc is a constant, the compact
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manifold χ is isomorphic to a group G with structure constants fa bc.
By following from [3,22], consider NS-NS sector of supergravity inD-dimensional

theory which we will call a parent theory. It contains the metric gij, the two-form
bij, and the dilaton φ, which all depend on D-dimensional coordinates. Now, the
D-dimensional theory is compactified on n-dimensional compact space. Therefore,
after truncation all massive modes, we have the d-dimensional effective theory,
where d = D − n.

The coordinates are divided into coordinates on external space and internal
space, such that

xi = (xµ, ym), (4.5)

where xµ and ym are coordinates in external space and internal space respectively.
The metric can be decomposed into the representation of effective theory, such

that

ds2 = ĝµν(x)dxµdxν + ĝab(x)νaνb, (4.6)

where νa is defined as

νa = ua m(y)dym + Âa µ(x)dxµ. (4.7)

Therefore, the metric tensor gij(x, y) in D-dimensional theory gives rise to the
massless modes in d-dimensional effective theory, such as, the metric tensor ĝµν(x),

gauge one-forms Âa µ(x) and scalar fields ĝab(x), where hatted fields are indepen-

dent of compact space coordinates. The one-forms Âa µ carry adjoint indices, while
the scalar fields ĝab are in the bi-adjoint representation.

Additionally, the two-form bij(x, y) can be decomposed as

b = b̂(2)(x) + b̂(1)a(x) ∧ νa + b̂(0)ab(x)νa ∧ νb + v, (4.8)

where

b = bij(x, y)dxi ∧ dxj, (4.9)

b̂(2)(x) = b̂µν(x)dxµ ∧ dxν , (4.10)

b̂(1)a ∧ νa = V̂aµ(x)dxµ ∧ νa, (4.11)

b̂(0)abν
a ∧ νb = b̂ab(x)νa ∧ νb, (4.12)

v = vmn(y)dym ∧ dyn. (4.13)

Therefore, in the effective theory, the two-from bij(x, y) is broken into the two-

form b̂µν(x), the one-forms V̂aµ carrying adjoint indices and the scalar fields b̂ab(x)
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carrying bi-adjoint indices. From the global two-from gauge transformation such as
b→ b+v, one can introduce gauge transformation by making the gauge parameter
depends on the internal coordinates v → v(y) [3].

The y-dependent information from the internal space are stored in the quantities
ua m(y) and vmn(y), which are called twists. The twists cannot depend on the
external coordinates unless the Lorentz invariance in the effective theory will be
broken.

At this point let us summarize the field contents in both parent theory and
effective theory.

D-dimensional theory
metric gij(x, y),

two-from bij(x, y)
dilaton φ(x, y)

→

d-dimensional theory
metric ĝµν(x)

two-from b̂µν(x),

2n gauge fields; Âa µ(x), V̂aµ(x)

n2 + 1 scalar fields; ĝab(x), b̂ab(x),
φ(x)

In addition, the gauge parameters for diffeomorphisms λi and two-form gauge
transformation λ̃i are also decomposed in terms of twist ua m as

λi(x, y) = (εµ(x), ua
m(y)Λ̂a(x)), (4.14)

λ̃i(x, y) = (ε̃µ(x), ua m(y) ˆ̃Λa(x)). (4.15)

At this point. one wonders how the original gauge transformations have been
changed in the effective theory. Let us consider the original diffeomorphisms of a
vector field V i along with the vector field λi. The components of vector field V i

are written as

V i(x, y) = (V̂ µ(x), ua
m(y)V̂ m(x)). (4.16)

Therefore, the D-dimensional Lie derivative of this vector with parameters λi are
given by

LλiV
i = λj∂jV

i − V j∂jλ
i. (4.17)

Consider the components in the non-compact directions, we get

LλiV
µ = λj∂jV̂

µ − V̂ j∂jλ
µ,

= εν∂νV̂
µ − V̂ ν∂νε

µ,

= LεV̂
µ. (4.18)

This turns out that the Lie derivative of the components in the non-compact
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direction gives the ordinary Lie derivative in d-dimensional effective theory. Next,
consider the component in the compact direction, we get

LλiV
m = λj∂jV

m − V j∂jλ
m,

= εν∂νV
m + λn∂nV

m − V̂ ν∂νλ
m − V n∂nλ

m,

= ua
m
(
ενV̂ a − V̂ ν∂νΛ̂

a + fa bcΛ̂
bV̂ c
)
. (4.19)

As a results, the transformation is gauged with the structure constant fa bc ob-
tained from the twist ua m.

Moreover, in [22], the two-form gauge transformation in parent theory also in-
duces two-form gauge transformation and non-abelion gauge transformation in the
effective theory.

In summary, Scherk-Schwarz compactification gives rise to 2n gauge fields in
effective theory. The roles of decomposed parameters in (4.15) can be interpreted
as

εµ → diffeomorphism parameter,

ε̃µ → two-form gauge transformation parameter,(
Λ̂a, ˆ̃Λa

)
→ gauge transformation parameters corresponding to 2n gauge fields.

Gauge fields in effective theory correspond to the non-abelian gauge transformation
in which the structure constants or fluxes are obtained from the twists ua m and
vmn, such that [3]

Habc = 3
{
∂[avbc] + fd [abvc]d

}
, (4.20)

fa bc = 2u[c
m∂mu

a
nub]

n, (4.21)

where Habc and fa bc are called two-form flux and metric flux, respectively. More-
over, these fluxes are known as geometric fluxes.

4.2. Geometric flux

What is the physical meaning of these fluxes? Before answer this question, let
us find out what is the meaning of the twists ua m and vmn.

Consider the internal metric gmn(x, y) which can be represented as

gmn(x, y) = ĝab(x)ua m(y)ub n(y). (4.22)

The ĝab(x) are scalar fields in effective theory, therefore, when the scalar fields take
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the vacuum expectation value, that is

ĝab = δab. (4.23)

Then, the internal metric becomes

gmn = ua m(y)δabu
b
n(y). (4.24)

This means that the twist ua n(y) can be interpreted as a vielbein on the compact
space.

Next, consider the internal component of two-form which takes the form

bmn(x, y) = b̂ab(x)ua m(y)ub n(y) + vmn(y), (4.25)

Since b̂ab(x) are also scalar fields in the effective theory, they can take the back-
ground value like ĝab, for instance,

b̂ab = 0. (4.26)

Thus, the internal components of the two-form become

bmn = vmn(y), (4.27)

which implies that for a frozen background, the twist vmn can be thought as a
two-form on the compact manifold.

Since, the twist ua m can be interpreted as the vielbein on the compact space,
the metric flux fa bc is corresponding to the Levi-Civita spin connection on the
compact space. The twist vmn can be regarded as the two-form on the compact
manifold, then Habc is the H-flux on the compact space. The fluxes fa bc and
Habc have the geometrical meaning on the compact space so that they are called
geometric flux.

4.3. T-duality chain and non-geometric flux

According to the Buscher rule (3.23), when the T-duality transformation along
the isometry direction is performed, some components of the two-from and the
metric are exchanged. The metric flux should transform into H-flux, or vice versa.
In order to clarify this point, let us consider the case where the compact manifold
is a 3-torus [3, 8, 16,17].
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3-torus with H-flux

Let us consider a flat 3-torus with non-vanishing H-flux with the metric and
two-from are given by

gmn(y) =

 1 0 0
0 1 0
0 0 1

 , bmn(y) =

 0 0 0
0 0 Ny1

0 −Ny1 0

 . (4.28)

In order to investigate that the background is globally well-defined, let us consider
the different between the field values at point y1 = 0 and y1 = 1. We see that the
metric remains the same, however, for two-form we have

bmn(1)− bmn(0) = Nmn, (4.29)

where the Nmn is defined as

Nmn =

 0 0 0
0 0 N
0 −N 0

 . (4.30)

Consider two-form gauge transformation with parameter λ̃m = (0, Ny3, 0), then
we get

b′mn(y1) = bmn(y1)−Nmn. (4.31)

Since the two form is well-defined under the coordinate patching

b′mn(1) = bmn(0), (4.32)

we can conclude that background is globally well-defined.
The metric and the two-from are corresponding to the twists ua m and vmn given

by

ua m(y) =

 1 0 0
0 1 0
0 0 1

 , vmn(y) =

 0 0 0
0 0 Ny1

0 −Ny1 0

 . (4.33)

The corresponding fluxes of the twist ua m and vmn are then calculated as

H123 = N, and f 1
23 = f 2

31 = f 3
12 = 0. (4.34)
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Twisted 3-torus without H-flux

Now, let us consider T-duality transformation of the 3-torus background with
H-flux. There are two isometry directions which are y2, or y3, in this case, the
y3-direction is chosen.

For convenient calculation, the metric and two-form are combined into the gen-
eralized metric HMN , which is O(3, 3) object. Then, T-duality in y3-direction is
given by O(3, 3) factorized duality element

hM
N =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0

 . (4.35)

After transformation

HMN → hM
PhN

QHPQ, (4.36)

the metric and the two-from in a new background are given by

gmn(y) =

 1 0 0
0 1 + (Ny1)2 Ny1

0 Ny1 1

 , bmn(y) = 0. (4.37)

This background is known as the twisted torus and it will turn on the metric flux.
Let us examine whether this background are globally well-define by considering
the metric at y1 = 0 and y1 = 1, we get

gmn(y1 = 0) =

 1 0 0
0 1 0
0 0 1

 , gmn(y1 = 1) =

 1 0 0
0 1 +N2 N
0 N 1

 . (4.38)

In order to glue the metric at boundary, let us consider the transformation of
the metric by GL(3,R) group elements defined as

hm
n =

 1 0 0
0 1 N
0 0 1

 . (4.39)
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Therefore, the transformed metric is obtained as

g′mn(y) = hm
pgpq(hn

q)T

=

 1 0 0
0 1 N
0 0 1

 1 0 0
0 1 + (Ny1)2 Ny1

0 Ny1 1

 1 0 0
0 1 0
0 N 1

 ,

=

 1 0 0
0 1 +N2(y1 + 1)2 N(y1 + 1)
0 N(y1 + 1) 1

 . (4.40)

So that the diffeomorphism transformation makes the metric globally well-defined
since

g′mn(0) = gmn(1). (4.41)

This is a well-defined background with twists ua m and vmn taking the form,

ua m(y) =

 1 0 0
0 1 0
0 Ny1 1

 , vmn(y) = 0. (4.42)

Therefore, the fluxes are calculated as

H123 = f 1
23 = f 2

31 = 0, and f 3
12 = −N. (4.43)

T-duality in y3-direction ,which is one of isometry directions, changes the back-
ground with H-flux to the background with the metric-flux. That means T-duality
links two different background together. In fact, in general background, the metric
flux and H-flux can be turned on simultaneously.

At this point, there is one isometry direction left, which is y2-direction, one
wonders what kind of a new background, if the T-duality are done in the remaining
isometry direction.

Non-geometric background

Consider T-duality transformation of twisted 3-torus background with the met-
ric and the two-from defined in (4.37), the genelized metric in that case is given
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by

HMN(y) =


1 0 0 0 0 0
0 1 −Ny1 0 0 0
0 −Ny1 1 + (Ny1)2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 + (Ny1)2 Ny1

0 0 0 0 Ny1 1

 . (4.44)

The factoried T-duality transformation in y2-direction is preformed by the O(3, 3)
element defined by

hM
N =


1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 . (4.45)

After evaluating the transformation, the generalized metric is obtained as

HMN(y) =


1 0 0 0 0 0
0 1 + (Ny1)2 0 0 0 Ny1

0 0 1 + (Ny1)2 0 −Ny1 0
0 0 0 1 0 0
0 0 −Ny1 0 1 0
0 Ny1 0 0 0 1

 . (4.46)

This leads to the metric and two-form, which are given by

gmn(y) =

 1 0 0
0 1

1+(Ny1)2
0

0 0 1
1+(Ny1)2

 , (4.47)

bmn(y) =

 0 0 0

0 0 − Ny1

1+(Ny1)2

0 Ny1

1+(Ny1)2
0

 . (4.48)

In this background, the metric and the two-from cannot be patching by gauge
transformation and diffeomorphisms. Therefore, this background are said to be
a non-geometric background, where the metric and the two-form are globally ill-
defined. This background is related to the Q-flux, and in fact, the patching condi-
tion can be done by the stringy transformation called β-transformation, which is
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represented in terms of O(3, 3) element as

hM N =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −N 0 1 0
0 N 0 0 0 1

 . (4.49)

This element is not in the part of O(n, n,Z) group elements that are discussed
in the chapter 2 because it breaks the upper triangle of the vielbein (2.41). This
background is known as T-fold background since it requires T-duality symmetry
in order to patch the coordinate together.

Under this transformation, the generalized metric transforms as

H′MN(y) = hM
PhN

QHPQ(y),

=


1 0 0 0 0 0
0 1 +N2(y1 + 1)2 0 0 0 N(y1 + 1)
0 0 1 +N2(y1 + 1)2 0 −N(y1 + 1) 0
0 0 0 1 0 0
0 0 −N(y1 + 1) 0 1 0
0 N(y1 + 1) 0 0 0 1

 .

(4.50)

Then we get

H′MN(0) = HMN(1). (4.51)

Therefore, the generalized metric is well-defined, however, the transformation that
glues the different patch is given by β-transformation, which is not the part of
diffeomorphism and two-form gauge transformation. That is why this background
are called the non-geometric background.

If one performs T-duality in the y1-direction, which is a non-isometry direction,
a new background which corresponds to R-flux is occurred. This background is not
well-defined even locally, because T-duality in non-isometry direction exchanges
the coordinate y1 with the dual coordinate ỹ1. That means the locality is lost in
this background.

As we see, T-duality connects the different backgrounds with different fluxes.
This T-duality chain is discussed in [17], and can be summarized as

Habc
Ta←→ fa bc

Tb←→ Qc
ab Tc←→ Rabc. (4.52)
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Since, the different background are connected by T-duality, they are said to be on
the same orbit. In the other word, compactification on flat torus with flux gives
the same effective theory as compactification on twisted tori or non-geometric
background since they are related by T-duality. However, there are backgrounds
that are not T-duality related to the geometric backgrounds called truly non-
geometric backgrounds.

Due to the problem of globally and locally ill-defined issues in backgrounds with
Q and R-fluxes, supergravity limit is not suitable for dealing with non-geometric
background. So that we will move to double field theory where it is T-duality
invariance and defined on the double space coordinates. Therefore, it is free from
these problems.
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5. Non-Geometric Flux in Double
Field Theory

From the previous chapter, when T-duality is performed on torus background of
supergravity, H-flux background can be turned into f-flux background. If T-duality
is performed again in different isometry direction, the Q-flux is emerged. However,
Q-flux background is globally well-defined via β-transformation, which is not the
parts of diffeomorphism and two-form gauge transformation group. Moreover, If
one performs T-duality in the remaining direction, which is non-isometry direction,
the background is changed into R-flux background. In this background, the metric
and the two-form are ill-defined even locally. Therefore, supergravity background
is not suitable for non-geometric flux. However, these problems are not occurred
in double field theory , in which we will see in the following sections.

5.1. Covariant flux

Since in DFT, the coordinates combined with the dual coordinates give rise to
the generalized coordinates, the problem with locality ill-defined in R-flux back-
ground does not occur. Moreover, double field theory is T-duality invariant theory,
patching condition can be done via O(n, n) transformation. That means Q-flux is
globally well-defined in DFT.

According to the previous section, the twists ua m and vmn can be thought of
as the vielbein and the two-form in the compact background. In this section, the
covariant flux will be defined by a generalized vielbein, which is constructed from
the vielbein and two-form. Following from [20], the generalized metric can be
parameterized in terms of the generalized vielbein as

HMN = EA
MSABE

B
N , (5.1)

where SAB is defined in terms of the Minkowski metric as

SAB =

(
ηab 0
0 ηab

)
. (5.2)

In this case, A,B refer to flat indices, whereas M,N refer to curved indices. More-
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over, the O(D,D) invariant metric can be constructed as

ηMN = EA
MηABE

B
N , (5.3)

where the ηAB is defined in the same way as ηMN by changing curved indices i, j
into flat indices a, b. Therefore, from (5.3), it implies that EA

M is also an O(D,D)
element.

Next, consider the double Lorentz transformation of the generalized vielbein
which is given by

ẼA
M = TA BE

B
M , (5.4)

and by requiring that the transformation does not change the generalized metric
HMN , it gives a condition for TA B, such that it preserves the double Lorentz
metric (5.2)

TA CS
CDTB D = SAB. (5.5)

The transformed vielbein (5.4) is also an O(D,D) elements, so that TA B also
preserves the O(D,D) invariant metric

TA Cη
CDTB D = ηAB. (5.6)

Conditions (5.5) and (5.6) imply that TA B belongs to the O(1, D−1)×O(1, D−
1) subgroup of O(D,D). Without the dilaton, EA

M is an O(D,D) element pa-
rameterized by 2D2 − D parameters. However, HMN is invariant under gauge
transformation O(1, D − 1)× O(1, D − 1) which has D2 −D parameters. There-
fore, the moduli space of EA

M is characterized by D2 parameters.
In supergravity, the generalized vielbein EA

M can be represented in terms of
the vielbein ea i and the two-from bij, which we can see from (2.41)

EA
M =

(
ea

i ea
lbli

0 ea i

)
. (5.7)

However, as we have seen from the previous chapter that the supergravity back-
ground defined by the metric gij and the two-form bij is not suitable for non-
geometric background. For example, the β-transformation, that glues the Q-flux
background, breaks the upper triangle and gives rise to the lower triangle part
of this vielbein. Thus, the generalized vielbein should be parameterized without
fixing gauge that is

EA
M =

(
ea

i ea
lbli

ea lβ
li ea i + ea lβ

lkbki

)
. (5.8)
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where βij is an antisymmetric bivector.
The O(D,D) element that corresponds to the transformation of this bivector

βij is given by

hM N =

(
δi
j 0

θij δi j

)
, (5.9)

where θij is an antisymmetric constant bivector. This transformation is known as
the β-transformation.

The geometric flux and non-geometric flux can be unified into a single O(D,D)
tensor known as the covariant flux. The covariant flux can be built with the
C-bracket of the generalized vielbeins as

FABC = [EA, EB]LC ECL. (5.10)

From the definition of C-bracket, the covariant flux is obtained

FABC =EA
N∂NEB

MECM −
1

2
EAN∂

MEB
NECM − EB N∂NEA

MECM

+
1

2
EBN∂

MEA
NECM . (5.11)

By defining ΩABC such that

ΩABC = EA
N∂NEB

MECM , (5.12)

the covariant flux is given by

FABC = ΩABC −
1

2
ΩCBA − ΩBAC +

1

2
ΩCAB. (5.13)

Moreover, from the property of the invariant metric ηAB

ηAB = EA
MEBM = EA

MηMNEB
N , (5.14)

and its derivative ∂NηAB = 0, ΩABC is antisymmetric in the last two indices

ΩABC = EA
N∂NEB

MECM =− EA N∂NEC
MEBM ,

=− ΩACB. (5.15)
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Hence, the covariant flux can be rewritten as

FABC = ΩABC −
1

2
ΩCBA − ΩBAC +

1

2
ΩCAB,

= ΩABC + ΩBCA + ΩCAB,

= 3Ω[ABC], (5.16)

which is totally antisymmetric. In terms ofD×D×D block, it has four independent
blocks; Fabc, Fa bc, Fa bc, and Fabc [20]. These elements are corresponding to the
fluxes that we have seen in the previous chapter; Habc, f

a
bc, Qa

bc, and Rabc.
In order to get full definition of each flux, the generalized vielbein without gauge

fixing is used, in other word, we will parameterize the generalized vielbein in terms
of the vielbein ea i, the two-form bij, and the bivector βij. However, in a given
physical situation, we may fix the gauge, for example, in the supergravity limit,
the gauge with vanishing of bivector βij = 0 is chosen.

Now, the ingredients for calculating fluxes are ready. First, consider the H-flux
(for the full detail of calculation see appendix D).

H-flux

In order to obtain the H-flux, we need Ωabc, which is defined as

Ωabc = ea
ieb

jec
k
(
∂ibij − bmi∂̃mbjk

)
= ea

ieb
jec

k(Dibjk), (5.17)

note that Di ≡ ∂i + bim∂̃
m. Therefore, the H-flux is then calculated as

Habc =3Ω[abc],

=3ea
ieb

jec
k
(
∂[ibjk] + b[im∂̃

mbjk]

)
,

=3ea
ieb

jec
kD[ibjk]. (5.18)

In the supergravity frame where the strong constraint is imposed ∂̃m(. . . ) = 0,
the H-flux becomes

Habc = 3ea
ieb

jec
k∂[ibjk]. (5.19)

So, in supergravity point of view, this flux is related to the three-form field strength
Hijk by

Habc = ea
ieb

jec
kHijk. (5.20)
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f-flux

In order to calculate f-flux, three components of ΩABC are required. However,
by antisymmetric property in the last two indices, two of them are verified

Ωa
bc =ea ieb

jec
k
{
∂̃ibjk + βimDmbjk

}
, (5.21)

Ωa
b
c =ea

iDie
b
jec

j + ea
ieb jβ

jkDibknec
n. (5.22)

Therefore, the f-flux is obtained as

fa bc =Ωa
bc + Ωc

a
b + Ωbc

a,

=2
(
e[c

iDie
a
jeb]

j
)

+ ea ieb
jec

k
(
∂̃ibjk + βimHmjk

)
. (5.23)

In the supergravity frame with vanishing bivector βij = 0, the f-flux takes the
from

fa bc = 2
(
e[c

i∂ie
a
jeb]

j
)
. (5.24)

This definition matches (4.21) when ua m becomes ea i. Therefore, this f-flux links
to the Levi-Civita spin connection.

Q-flux

In this case, two of ΩABC have to be calculated and are given by

Ωa
bc =ea

ieb je
c
k

(
Diβ

jk + βjmDibmnβ
kn
)
, (5.25)

Ωab
c =ea ie

b
jec

kβjlD̃iblk + ea iec
n
(
D̃ieb n + βijbjm(∂̃meb n + ∂̃meb kβ

klbln)
)
.

(5.26)

where D̃i ≡ ∂̃i + βim∂m. As a result, the Q-flux is obtained as

Qa
bc =Ωa

bc + Ωc
a
b + Ωbc

a,

=ea
ieb je

c
k

(
Diβ

jk + βjmβknDibmn + 2β[k|lD̃j]bli

)
+ 2ea

i
(
e[b

jD̃
jec] i + e[b

jβ
jpbpm∂̃

mec] i + e[b
jβ

jpbpm∂̃
mec] kβ

klbli

)
. (5.27)

In the supergravity frame with vanishing two-form bij = 0, the Q-flux is given
by

Qa
bc = ea

ieb je
c
k

(
∂iβ

jk
)

+ βjmea
i(eb j∂me

c
i − ec j∂meb i). (5.28)
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R-flux

In this case one component of Ωabc is required and given by

Ωabc = ea ie
b
je
c
k

{
D̃iβjk + βimbml∂̃

lβjk + βimβjlβknDmbln + βjlβkn∂̃ibln

}
.

(5.29)

Therefore, the R-flux is obtained as

Rabc =Ωabc + Ωbca + Ωcab,

=3ea ie
b
je
c
k

{
D̃[iβjk] + β[i|mbml∂̃

lβjk] + β[jl∂̃iblnβ
k]n +

1

3
βimβjlβknHmln

}
.

(5.30)

In the supergravity limit with vanishing two-form bij = 0, the R-flux is given by

Rabc = 3a ie
b
je
c
kβ

[im∂mβ
jk]. (5.31)

From the definitions of fluxes that are obtained, the H-flux and f-flux can be
calculated from the vielbein and the two-form. However, in supergravity limit,
Q-flux and R-flux are also well-defined in terms of the bivector instead of the
two-form [21].

Since the H-flux and f-flux are related to the three-from field strength and the
Levi-Civita spin connection, Q-flux and R-flux may have the geometrical meaning.

5.2. Geometry of non-geometric flux

In this section, the geometrical meaning of Q-flux and R-flux are discussed base
on [16]. Since Q-flux and R-flux are not well-defined in terms of the metric gij, the
two-form bij, and the dilaton φ, the generalized metric should be parameterized in
terms of a new metric g̃ij, a bivector βij, and a new dilaton φ̃

HMN =

(
g̃ij − βilg̃lkβkj −βilg̃lj

g̃ikβ
kj g̃ij

)
, e−2d =

√
g̃e−2φ̃, (5.32)

where g̃ is the determinate of the metric g̃ij. The strong constraint is hold in the
general way such that

∂k∂̃
kA = ∂kA∂̃

kB = 0, (5.33)

where A and B are fields and gauge parameters.
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Equations (5.27) and (5.30) give the relation between Q-flux and R-flux in flat
indices labelled by a, b, c and curved indices labelled by i, j, k. Therefore, R-flux
should be a tensor because it is related to Rijk by

Rabc = ea ie
b
je
c
kR

ijk, (5.34)

where Rijk is given by

Rijk = 3
(
D̃[iβjk]

)
. (5.35)

In the frame where two-from is vanishing and the strong constraint is imposed in
arbitrary frame, the Q-flux (5.27) is given by

Qa
bc = ea

ieb je
c
k∂iβ

jk + 2ea
ie[b

jD̃
jec] i. (5.36)

However, there is no direct relation between flat indices and curved indices in this
case. So Q-flux should be a connection and the Q-flux in curved indices is given
by

Qi
jk = ∂iβ

jk. (5.37)

Let us consider the R-flux first because it is easier to determine. The R-flux is
given in (5.35), and with the definition of the derivative D̃i it becomes

Rijk = 3
(
∂̃[iβjk] + β[il∂iβ

jk]
)
. (5.38)

As we mention before, in the supergravity limit, it takes the form

Rijk = 3β[il∂lβ
jk]. (5.39)

Since it is constructed from the ordinary derivative rather than the covariant
derivative, it should not be a tensor. However, from the symmetric property of the
Levi-Civita connection, this definition can be rewritten in terms of the covariant
derivative instead of the partial derivative as

Rijk = 3β[il∇lβ
jk]. (5.40)

This is a well-defined tensor in the supergravity limit.
Conversely, if the frame is chosen in another way such that the derivative with

respect to the coordinates vanishing ∂i(. . . ) = 0. The R-flux becomes

Rijk = 3∂̃[iβjk]. (5.41)
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R-flux in this form reminds us the structure of the three-form flux Hijk in the
supergravity limit, which takes the form

Hijk = 3∂[ibjk]. (5.42)

Therefore, Rijk should play role of three-form field strength in the dual theory.
Next, let us consider the role of Q-flux. By performing the generalized Lie

derivative of the generalized metric (5.32) along the generalized vector ξM = (0, ξi),
the metric and the bivector transform as

Lξg̃ij =Lξg̃ij, (5.43)

Lξβij =Lξβ
ij − (∂̃iξj − ∂̃jξi). (5.44)

In this case, the generalized Lie derivative is identified as the gauge transformation
with parameter ξi

δξ(. . . ) = Lξ(. . . ). (5.45)

The transformation is said to be covariant if and only if the gauge transformation
is equivalent to the ordinary Lie derivative

δξ(. . . ) = Lξ(. . . ). (5.46)

If the gauge transformations of fields are not covariant transformations, there exists
a non-covariant part

∆ξ(. . . ) = (δξ − Lξ)(. . . ). (5.47)

Hence, from (5.43) and (5.44), the metric transforms covariantly, on the contrary,
the bivector has a non-covariant part given by the winding derivative of the gauge
parameter ξi

∆ξg̃ij =0, (5.48)

∆ξβ
ij =− (∂̃iξj − ∂̃jξi). (5.49)

Next, consider the gauge transformation of the dilaton φ̃, which is coveriant
under the transformation

δξφ̃ = ξi∂iφ̃. (5.50)
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On the other hand, the winding derivative of the dilaton ∂̃iφ̃ is not covariant

δξ(∂̃
iφ̃) =∂̃i(δξφ̃),

=∂̃i(ξj∂jφ̃),

=(∂̃iξj)∂jφ̃+ ξj∂j(∂̃
iφ̃). (5.51)

By adding terms

(∂jξ
i)∂̃jφ̃+ (∂̃jξi)∂jφ̃, (5.52)

which vanish due to the strong constraint, into (5.51), it becomes

δξ(∂̃
iφ̃) =ξj∂j(∂̃

iφ̃)− (∂jξ
i)∂̃jφ̃+ (∂̃iξj − ∂̃jξi)∂jφ̃,

=Lξ(∂̃
iφ̃) + (∂̃iξj − ∂̃jξi)∂jφ̃. (5.53)

That means a non-covariant part of ∂̃iφ̃ is given by

∆ξ(∂̃
iφ̃) = (∂̃iξj − ∂̃jξi)∂jφ̃. (5.54)

The non-convariant parts of βij (5.49) and ∂̃iφ̃ (5.54) imply D̃iφ̃ = ∂̃iφ̃ + βij∂jφ̃
transforms covariantly

∆ξ(D̃
iφ̃) =∆ξ(∂̃

iφ̃) + (∆ξβ
ij)∂jφ̃+ βij∆ξ(∂jφ̃),

=(∂̃iξj − ∂̃jξi)∂jφ̃− (∂̃iξj − ∂̃jξi)∂jφ̃,
=0. (5.55)

This derivative has a non-vanishing commutation relation, which is given by Q-flux
and R-flux (see appendix E.)[

D̃i, D̃j
]

= Rijk∂k +Qk
ijD̃k, (5.56)

where Rijk and Qk
ij are defined in (5.35) and (5.37) respectively. Furthermore,

Rijk is covariant under gauge transformation

∆ξR
ijk = 0. (5.57)

Therefore, Rijk is obviously a covariant tensor.
However, for a vector V i, the derivative D̃i of the vector is not covariant

∆ξ(D̃
iV j) = −D̃i∂kξ

jV k. (5.58)
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A new covariant derivative of the vector is then defined as

∇̃iV j =D̃iV j − Γ̌k
ijV k, (5.59)

where the non-covariant part of Γ̌k
ij is required such that

∆ξΓ̌k
ij = −D̃i∂kξ

j. (5.60)

Since the antisymmetric part of the connection is not covariant

∆ξΓ̌k
[ij] = −2D̃[i∂kξ

j] 6= 0, (5.61)

this means the antisymmetric part of this connection is not a tensor and cannot
be chosen to be zero like the case of the Levi-Civita connection. Therefore, both
symmetric and antisymmetric parts must be evaluated. Firstly let us consider the
symmetric part of the connection. By requiring the metric compatibility

∇̃ig̃jk = D̃ig̃jk − Γ̌l
ij g̃lk − Γ̌l

ikg̃jl = 0, (5.62)

the symmetric part of the connection is (see appendix F)

Γ̌k
(ij) = Γ̃k

ij − g̃mk(Γ̌l [jm]g̃li + Γ̌l
[im]g̃lj), (5.63)

where Γ̃k
ij is analogous to the Levi-Civita connection with the metric is g̃ij and

the derivative D̃i

Γ̃k
ij =

1

2
g̃km

(
D̃j g̃im + D̃ig̃mj − D̃mg̃ij

)
. (5.64)

In addition, the commutation relation of the covariant derivative on the dilaton φ̃
is given by [

∇̃i, ∇̃j
]
φ̃ =∇̃i(D̃jφ̃)− (i↔ j),

=D̃iD̃jφ̃− Γ̌k
ijD̃kφ̃− (i↔ j),

=
[
D̃i, D̃j

]
φ̃− 2Γ̌k

[ij]D̃kφ̃. (5.65)

By using the commutation relation (5.56), the commutation relation of the covari-
ant derivatives on the dilaton become[

∇̃i, ∇̃j
]
φ̃ = Rijk∂kφ̃+ (Qk

ij − 2Γ̌k
[ij])D̃kφ̃. (5.66)

Since the Rijk is a covariant tensor, and the commutation relation should give the
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covariant tensor, this condition requires the second term of the above expression
vanishes. Therefore, the antisymmetric part of the connection can be determined

Γ̌k
[ij] =

1

2
Qk

ij. (5.67)

Thus the expression of the connection is given by

Γ̌k
ij = Γ̃k

ij − g̃mkg̃l(iQl
j)m +

1

2
Qk

ij. (5.68)

From the above relation, the Q-flux can be regarded as a winding covariant deriva-
tive and the result in (5.68) is satisfying the requirement of the connection (5.60).

Moreover, the Q-flux in flat indices (5.36) can be evaluated by the following
procedure. First, consider the covariant derivative on the vielbein

Γ̌a
bcea i =∇̃bec i,

=eb i∇̃iec k,

=eb i

(
D̃iec k + Γ̌k

ijec j

)
. (5.69)

As a result, the connection in flat indices takes the form

Γ̌a
bc = ea

ieb j

(
D̃jec i + Γ̌i

jkec k

)
. (5.70)

By using the same relation in (5.67), the Q-flux in flat indices is obtained

Qa
bc =Γ̌a

bc − Γ̌a
cb,

=ea
keb ie

c
j

(
Γ̌k

ij − Γ̌k
ji
)

+ ea
i
(
eb jD̃

jec i − ec jD̃jeb i

)
,

=ea
keb ie

c
j(Qk

ij) + 2ea
i
(
e[b

jD̃
jec] i

)
. (5.71)

This is the same expression as (5.36).

5.3. Gauged Double Field Theory

From [3, 16, 20], let us consider the double field theory with n-dimensions are
compactified. Upon the compactification, the O(D,D) double Lorentz structure
in the parent theory is broken, namely,

O(D,D)→ O(d, d)×O(n, n). (5.72)
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The O(d, d) is the double Lorentz group in the effective theory and O(n, n) is
the global symmetry group. As we mention in chapter 3, with all the massive
modes truncated, the massless modes are

1. The vielbein eα µ.

2. The two-form bµν or the bivector βµν .

3. 2n gauge fields AM̌ µ.

4. n2 scalar fields ΦM̌Ň and the dilaton φ.

The gauge fields AM̌ µ, which are the O(n, n) vector representation, consist of the
gauge fields arising from the metric and the two-form or bivector in the parent
theory. Moreover, the scalar fields ΦM̌Ň are constructed from the scalar fields ĝab
and b̂ab.

In this case, it is known as the ungauged theory because the gauge symmetry
is U(1)2n so it has 2n gauge field. The ungauged theory is also invariant under
the O(n, n) global group [3], however, it is not interesting because it consists of
many problems. For example, the scalar potential vanishes and is also flat in any
direction, so that the moduli space is then degenerate and there is no freedom
for choosing the expectation value. Moreover, the vanishing scalar potential leads
to the absence of cosmological constant, which is contradict to the observation
showing the acceleration of the Universe. Due to the abelian gauge symmetry
U(1)2n, this theory cannot describe the standard model because the interactions
between particles are governed in terms of the non-abelian gauge symmetry.

However, the abelian structure can be promoted to the non-abelian group, which
is a subgroup of O(n, n). This method is known as the embedding tensor formalism
[16, 20, 23, 29]. Recall that the group generators of O(n, n) global symmetry are
represented by (tα)M̌

Ň , the embedding tensors are given by Θα
M̌

. Therefore, the

gauge group generators are given by Θα
M̌

(tα)Ň
Ľ. This embedding tensor have

governed the detail of gauge group the effective theory, and the fluxes FM̌ŇĽ

arising from compactification are components of Θα
M̌

(tα)Ň
Ľ.

Despite the abelian gauge symmetry can be promoted in to non-abelian gauge
symmetry, the O(n, n) global symmetry in this case are broken into a subgroup
that leaves FM̌ŇĽ invariant. Actually, the O(n, n) symmetry links the different
configurations of fluxes together because the fluxes FM̌ŇĽ can be thought of as
covariant tensor. Therefore, if fluxes transform into new fluxes via h ∈ O(n, n)

FM̌ŇĽ → hM̌
P̌hŇ

Q̌hĽ
ŘFP̌ Q̌Ř, (5.73)
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gauge fields and scalar fields can be redefined via h ∈ O(n, n)

AM̌ µ →hM̌ ŇA
Ň , (5.74)

ΦM̌Ň →hM̌ P̌hŇ
Q̌ΦP̌ Q̌. (5.75)

As a result, the overall action is invariant under O(n, n) [3, 16]

S [F , A,Φ] = S ′ [h(F), h(A), h(Φ)] . (5.76)

That means the two theories that are related by O(n, n) are the same theory.
Therefore, it is convenient to classify the orbit of fluxes rather the configuration
of fluxes.

The orbits of fluxes that can be transformed into the geometric fluxes are called
orbit of geometric fluxes, that we see from the example in chapter 4. In that case,
only one flux is turned on, for example, on the torus the H-flux is presented. When
the T-duality are performed in the isometry direction, H-flux has become f-flux. If
T-duality is done again in the another isometry direction, f-flux is then transformed
into Q-flux. Eventually, Q-flux can be turned into R-flux via T-duality in the
remaining direction. This is an example of the orbits of geometric fluxes, where
the only one flux can be turned on at the same time. Moreover, the cases, where
multiple fluxes are turned on at the same time and T-duality cannot eliminate the
non-geometric fluxes are called the orbit of truly non-geometric fluxes. They are
investigated in [20] and they lead to the interesting in inflation problem in [30].
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6. Conclusion

When the string theory is formulated on n-torus space, the result leads to the
existence of new modes called the winding modes and the T-duality symmetry
relates these winding modes to the momentum modes. The T-duality gives rise
to the O(n, n) structure preserving the spectrum and level-matching condition in
the compact space. When cooperating T-duality into symmetry of the action,
double field theory is emerging. Since it includes the momentum modes as well
as the winding modes, the field contents in double field theory should depend on
2D-dimension, which correspond to the coordinates dual to momentum and wind-
ing modes. However, with the requirement of the closure of the generalized Lie
derivative, the strong constraint must be imposed. Consequently, the configura-
tions of fields then depend only on D-dimensional null subspace of 2D-dimensional
manifold.

The field contents in double field theory can be parameterized in several ways.
For example, the generalized metric HMN which is a O(D,D) representation, can
be expressed in terms of the symmetric tensor (metric tensor) and antisymmetric
tensor (either a two-form or a bivector). This theory leads to the NS-NS sector
in the supergravity theory and the unification of the Lie derivative with two-form
gauge transformation.

Upon Scherk-Schwarz compactification, fluxes have been induced in the effective
theory. Fluxes can be transformed into other fluxes by T-duality transformation.
However, there are some fluxes, which are not well-defined globally, such as Q-flux,
and even locally such as R-flux. These problems arise because of the need of stringy
symmetry in order to glue coordinate patching in Q-flux, and the dependence of
dual coordinates in R-flux. On the other hand, these problems are not occurred
in double field theory framework because T-duality symmetry is implanted in
double field theory, so that glueing coordinate patches via T-duality is acceptable.
Moreover, due to the dependence of both coordinates and dual coordinates, R-flux
is locally well-defined in this framework.

By using the covariant fluxes calculated from the generalized vielbein without
gauge fixing, the meaning of non-geometric fluxes such as Q-flux and R-flux can
be determined in terms of the geometrical quantities. The R-flux can be identified
with covariant field strength in analogous to to the H-flux, but using bivector
instead of two-form. Similarly, Q-flux can be identified with the connection of the
winding derivative.
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Fluxes in the effective theory are required because they give rise to the scalar
potential in effective theory, which leads to the vacuum configuration as well as the
cosmological constant. Moreover, fluxes in effective theory also play the role of a
structure constant of the gauge group, which is a subgroup of O(n, n) and leads to
the non-abelion gauge symmetry. Even if the O(n, n) symmetry is broken due to
the existence of fluxes, the action is still invariant because fluxes are the covariant
O(n, n) tensor along with the redefining fields via O(n, n) element, therefore, the
action is manifestly invariant. This implies the classification of the theory by
the gauge orbits rather than the configuration of fluxes. The geometric flux and
non-geometric flux can be presented at the same time, and this correspond to the
non-geometric flux space, which is interesting and will be studied in the future
work.
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A. The Generalized Lie
derivative of HMN

Let us consider the generalized Lie derivative of the generalized metric with
parameter ξM = (λ̃i, λ

i) [9]. In this case, the strong constraint is imposed in the
supergravity frame such that ∂̃m(. . . ) = 0. The generalized Lie derivative of the
generalized metric is given by

LξHMN = ξP∂PHMN +
(
∂Mξ

P − ∂P ξM
)
HPN +

(
∂Nξ

P − ∂P ξN
)
HMP , (A.1)

where HMN is defined as

HMN =

(
gij − bikgklblj bikg

kj

−gikbkj gij

)
. (A.2)

Therefore, let us consider the generalized Lie derivative of the component Hij,
which is given by

LξHij =ξP∂PHij + (∂̃iξP )HP
j − (∂Pλi)HPj + (∂̃jξP )Hi

P − (∂Pλj)Hi
P ,

=λ̃k∂̃
kHij + λk∂kHij + (∂̃iλ̃k)Hkj + (∂̃iλk)Hk

j − (∂̃kλi)Hkj − (∂kλ
i)Hkj

(∂̃jλ̃k)Hik + (∂̃jλk)Hi
k − (∂̃kλj)Hi

k − (∂kλ
j)Hik. (A.3)

When the strong constraint is imposed, this equation becomes

LξHij = λk∂kHij − (∂kλ
i)Hkj − (∂kλ

j)Hik. (A.4)

By substituting the definition of HMN , this gives

Lξgij = λk∂kg
ij − (∂kλ

i)gkj − (∂kλ
j)gik = Lλg

ij. (A.5)

This is a normal Lie derivative of the inverse metric tensor gij along the vector
field λi.

50



Next, let us consider the generalized Lie derivative of Hij, which is given by

LξHij =ξP∂PHij + (∂iξ
P − ∂P ξ̃i)HPi + (∂jξ

P − ∂Pλj)HiP ,

=λ̃k∂
kHij + λk∂kHij + (∂iλ̃k)Hk

j + (∂iλ
k)Hkj − (∂̃kλ̃i)Hkj − (∂kλ̃i)Hk

j

+ (∂iλ̃k)Hi
k + (∂jλ

k)Hik − (∂̃kλ̃j)Hik − (∂kλ̃j)Hi
k. (A.6)

In supergravity frame, it becomes

LξHij = λk∂kHij + (∂iλ
k)Hkj − (∂kλ̃i)Hk

j + (∂iλ̃k)Hi
k + (∂jλ

k)Hik − (∂kλ̃j)Hi
k.

(A.7)

Consider the left-hand side of (A.7), which is given by

LHS =Lξ(gij − bikgklblj)
=Lξgij − (Lξbik) gklblj − bik

(
Lξgkl

)
blj − bikgkl (Lξblj) . (A.8)

On the other hand, the right-hand side of (A.7) takes the form

RHS =λp∂p(gij − bikgklblj) + (∂iλ̃k)(−gklblj) + (∂)iλk)(gkj − bklglpbpj)
− (∂kλ̃k)(−gklblj) + (∂jλ̃k)(bilg

lk) + (∂jλ
k)(gik − bilglpbpk)− (∂kλ̃j)(bilg

lk),

=λp∂pgij − (λp∂pbik)g
klblj − bik(λp∂pg

kl)blj − bikgkl(λp∂pblj) + (∂iλ
k)gkj

+ (∂iλ
k)gik − (∂iλ̃k)g

klblj + (∂kλ̃i)g
KLblj − (∂iλ

q)bqkg
klblj − (∂kλ

q)bIqg
klblj

− (∂kλ̃j)bilg
lk − (∂jλ

K)bilg
lpbpk + (∂kλ

q)biqg
klblj,

=Lλgij −
{
Lλbik + (∂iλ̃k − ∂kλ̃i)

}
gklblj − bik

{
Lλg

kl
}
blj

− bikgkl
{
Lλ + (∂lλ̃j − ∂jλ̃l

}
. (A.9)

Therefore, the generalized Lie derivative of the metric and the two-from when the
strong constraint is hold in the supergravity frame are given as

Lξgij = Lλgij, (A.10)

Lξbij = Lλbij + (∂iλ̃j − ∂jλ̃i). (A.11)

51



B. Commutation Relation of
Generalized Lie Derivative

Suppose that the commutation relation of the generalized Lie derivative on a
generalized vector V M is given by

[Lξ1 ,Lξ2 ]V M = Lξ12V M . (B.1)

The right-hand side of (B.1) is given by (3.31)

RHS = ξP12∂PV
M +

(
∂Mξ12P − ∂P ξM12

)
V P . (B.2)

On the other hand, the left-hand side is given by

LHS =Lξ1Lξ2V M − Lξ2Lξ1V M ,

=Lξ1
{
ξP2 ∂PV

M +
(
∂Mξ2P − ∂P ξM2

)
V P
}
− (1↔ 2),

=
(
Lξ1ξP2

)
∂PV

M + ξP2
(
Lξ1∂PV M

)
+
(
Lξ1∂Mξ2P

)
V P +

(
∂Mξ2p

) (
Lξ1V P

)
−
(
Lξ1∂P ξM2

)
V P −

(
∂P ξ

M
2

) (
Lξ1V P

)
− (1↔ 2),

=
{
ξN1 ∂Nξ

P
2 + (∂P ξ1N − ∂NξP1 )ξN2

}
∂PV

M

+ ξP2
{
ξN1 ∂N(∂PV

M) + (∂P ξ
N
1 − ∂Nξ1P )∂NV

M + (∂Mξ1N − ∂NξM1 )∂PV
N
}

+ V P
{
ξN1 ∂N(∂Mξ2P ) + (∂Mξ1N − ∂NξM1 )(∂Nξ2P ) + (∂P ξ

N
1 − ∂Nξ1P )(∂Mξ2N)

}
+ (∂Mξ2P )

{
ξN1 ∂NV

P + (∂P ξ1N − ∂NξP1 )V N
}

− V P
{
ξN1 ∂N∂P ξ

M
2 + (∂P ξ

N
1 − ∂Nξ1P )(∂Nξ

M
2 ) + (∂Mξ1N − ∂NξM1 )(∂P ξ

N
2 )
}

− (∂P ξ
M
2 )
{
ξN1 ∂NV

P + (∂P ξ1N − ∂NξP1 )V B
}
− (1↔ 2),

=
{
ξN1 ∂Nξ

P
2 − ξN2 ∂NξP1

}
∂PV

M

+ V P
{
ξN1 ∂N∂

Mξ2P + ∂P ξ
N
1 ∂

Mξ2N − ∂Nξ1P∂
Mξ2N − ξN1 ∂N∂P ξM2

+ ∂Nξ
M
1 ∂P ξ

N
2 − ξN2 ∂N∂Mξ1P − ∂P ξN2 ∂Mξ1N + ∂Nξ2P∂

Mξ1N

+ ∂Nξ2P∂
Mξ1N + ξN2 ∂N∂P ξ

M
1 − ∂NξM2 ∂P ξN1

− ∂Nξ
M
1 ∂

Nξ2P + ∂Nξ
M
2 ∂

Nξ1P

}
,
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=
{
ξN1 ∂Nξ

P
2 − ξN2 ∂NξP1

}
∂PV

M

+ ∂M
(
ξ1N∂

Nξ2P − ξ2N∂
Nξ1P −

1

2
ξ1N∂P ξ

N
2 +

1

2
ξ2N∂P ξ1N

)
V P

− ∂P
(
ξ1N∂

NξM2 − ξ2N∂
NξM1 −

1

2
ξ1N∂

MξN2 +
1

2
ξ2N∂

Mξ1N

)
V P

−
(
∂Nξ

M
1 ∂

Nξ2P − ∂NξM2 ∂Nξ1P

)
V P (B.3)

Therefore, we get

LHS =

(
ξN1 ∂Nξ

P
2 − ξN2 ∂NξP1 −

1

2
ξN1 ∂

P ξ2N +
1

2
ξN2 ∂

P ξ1N

)
∂PV

M

+ ∂M
(
ξ1N∂

Nξ2P − ξ2N∂
Nξ1P −

1

2
ξ1N∂P ξ

N
2 +

1

2
ξ2N∂P ξ1N

)
V P

− ∂P
(
ξ1N∂

NξM2 − ξ2N∂
NξM1 −

1

2
ξ1N∂

MξN2 +
1

2
ξ2N∂

Mξ1N

)
V P

−
(
∂Nξ

M
1 ∂

Nξ2P − ∂NξM2 ∂Nξ1P

)
V P

+
1

2
ξN1 ∂

P ξ2N∂PV
M − 1

2
ξN2 ∂

P ξ1N∂PV
M (B.4)

As a result, the parameter ξP12 is given by

ξP12 = [ξ1, ξ2]PC . (B.5)

This shows that

[Lξ1 ,Lξ2 ]V M = L[ξ1,ξ2]CV
M + ∆FM , (B.6)

where

∆FM =
1

2
ξN1 ∂

P ξ2N∂PV
M − 1

2
ξN2 ∂

P ξ1N∂PV
M −

(
∂Nξ

M
1 ∂

Nξ2P − ∂NξM2 ∂Nξ1P

)
V P .

(B.7)

In order for the closure of this transformation, or in other word, LHS of (B.1) is
equal to RHS, some constraint must be imposed. This constraint is known as the
strong constraint, and when it is hold, it leads to the vanishing of ∆FM .

Therefore, the commutation relation of the generalized Lie derivative with strong
constraint takes the form

[Lξ1 ,Lξ2 ] = L[ξ1,ξ2]C . (B.8)
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C. Jacobiator of the Generalized
Lie Derivative

By following from [26], the jacobiator can be written as

JM(ξ1, ξ2, ξ3) = [[ξ1, ξ2]C , ξ3]MC + [[ξ2, ξ3]C , ξ1]MC + [[ξ3, ξ1]C , ξ2]MC . (C.1)

First, let us consider

[[ξ1, ξ2]C , ξ3]MC . (C.2)

From the properties of the generalized Lie derivative (3.41) and (3.43), we then
get

[[ξ1, ξ2]C , ξ3]MC =
1

2

(
L[ξ1,ξ2]C

ξM3 − Lξ3 [ξ1, ξ2]MC

)
, (C.3)

=
1

2

(
Lξ1Lξ2ξM3 − Lξ2Lξ1ξM3

)
+

1

4

(
Lξ3Lξ2ξM1 − Lξ3Lξ1ξM2

)
. (C.4)

From (C.3), then the Jacobiator takes the form

JM(ξ1, ξ2, ξ3) = [[ξ1, ξ2]C , ξ3]MC + [[ξ2, ξ3]C , ξ1]MC + [[ξ3, ξ1]C , ξ2]MC ,

=
1

2

(
L[ξ1,ξ2]C

ξM3 + L[ξ2,ξ3]C
ξM1 + L[ξ3,ξ1]C

ξM2

−Lξ3 [ξ1, ξ2]MC − Lξ1 [ξ2, ξ3]MC − Lξ2 [ξ3, ξ1]MC

)
. (C.5)

Next let us consider

Lξ3 [ξ1, ξ2]MC + Lξ1 [ξ2, ξ3]MC + Lξ2 [ξ3, ξ1]MC . (C.6)

By using (3.43), these terms can be rewritten as

Lξ3 [ξ1, ξ2]MC + Lξ1 [ξ2, ξ3]MC + Lξ2 [ξ3, ξ1]MC

=
(
Lξ3Lξ1ξM2 − Lξ3Lξ2ξM1 + Lξ1Lξ2ξM3 − Lξ1Lξ3ξM2 + Lξ2Lξ3ξM1 − Lξ2Lξ1ξM3

)
,

=
1

2

(
L[ξ1,ξ2]C

ξM3 + L[ξ2,ξ3]C
ξM1 + L[ξ3,ξ1]C

ξM2
)
. (C.7)
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Therefore, from (C.5) and (C.7), the Jacobiator is obtained as

JM(ξ1, ξ2, ξ3) =
1

4

(
L[ξ1,ξ2]C

ξM3 + L[ξ2,ξ3]C
ξM1 + L[ξ3,ξ1]C

ξM2
)
. (C.8)

Alternatively, if one starts from (C.4), the Jacobiator can be written as

JM(ξ1, ξ2, ξ3) =
1

2

(
Lξ1 [ξ2, ξ3]MC + Lξ2 [ξ3, ξ1]MC + Lξ3 [ξ1, ξ2]MC

)
. (C.9)

From the symmetric property of the generalized Lie derivative (3.44) along with
(C.8) and (C.9), the Jacobiator can be obviously rearranged such that it is written
in terms of total derivative

JM(ξ1, ξ2, ξ3) =
1

6
∂M
(
ξP1 [ξ2, ξ3]CP + ξP2 [ξ3, ξ1]CP + ξP3 [ξ1, ξ2]CP

)
. (C.10)
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D. Covariant Flux Calculation

By following from [20] and the generalized vielbein is parameterized in terms
of the vielbein ea i, the two-from bij, and the bivector βij. In the other word, the
gauge fixing is not imposed such that

EA
M =

(
Ea

i Eai
Eai Ea

i

)
=

(
ea

i ea
lbli

ea lβ
li ea i + ea lβ

lkbki

)
. (D.1)

Let us begin with the simplest flux that is Habc.

H-flux

The definition of H-flux is given by

Habc = 3Ω[abc]. (D.2)

There is only one component of ΩABC needed to be calculated in this case. That
is

Ωabc =Ea
M∂MEb

NEcN ,

=Ea
m∂mEb

nEcn + Eam∂̃
mEb

nEcn + Ea
m∂mEbnEc

n + Eam∂̃
mEbnEc

n,

=ea
m∂meb

n(ec
jbjn) + (ea

kbkm)∂̃meb
n(ec

jbjn) + ea
m∂m(eb

jbjn)ec
n

+ (ea
kbkm)∂̃m(eb

jbjn)ec
n,

=ea
m∂meb

nec
jbjn + ea

kbkn∂̃
meb

nec
jbjn + ea

m∂meb
jbjnec

n + ea
meb

j∂mbjnec
n

+ ea
kbkm∂̃

meb
jbjnec

n + ea
kbkmeb

j ∂̃mbjnec
n,

=ea
ieb

jec
k(∂ibjk + bim∂̃

mbjk),

=ea
ieb

jec
k(Dibjk), (D.3)

where the derivative Dm is defined as

Dm ≡ ∂m + bml∂̃
l. (D.4)
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Therefore, H-flux is easily obtained

Habc = 3Ω[abc] = 3ea
ieb

jec
k(∂[ibjk] + b[i|m∂̃

mbjk]) = 3ea
ieb

jec
kD[ibjk]. (D.5)

f-flux

The f-flux can be obtained by

fa bc = Ωa
bc + Ωc

a
b + Ωbc

a. (D.6)

However, from the antisymmetric property of ΩABC , we have

Ωbc
a = −Ωb

a
c. (D.7)

Therefore, the Ωa
bc and Ωa

b
c need to be evaluated.

Ωa
bc =EaM∂MEb

NEcN ,

=Eam∂mEb
nEcn + Ea

m∂̃
mEb

nEcn + Eam∂mEbnEc
n + Ea

m∂̃EbnEc
n,

=(ea iβ
im)∂m(eb

jbjn)ec
n + (ea m + ea iβ

ijbjm)∂̃meb
n(ec

kbkn)

+ (ea iβ
im)∂m(eb

jbjn)ec
n + (ea m + ea iβ

ijbjm)∂̃m(eb
kbkn)ec

n,

=ea iβ
im∂meb

nec
nbkj + ea m∂̃

meb
nec

kbkn + ea iβ
ijbjm∂̃

meb
nec

kbkn

+ ea iβ
im∂meb

jbjnec
n + ea iβ

imeb
j∂mbjnec

n + ea m∂̃
meb

kbknec
n

+ ea meb
k∂̃mbknec

n + ea iβ
ijbjm∂̃

meb
kbknec

n + ea iβ
ijbjmeb

k∂̃lbklec
n,

=ea ieb
jec

k
{
∂̃ibjk + βim(∂mbjk − blm∂̃lbjk)

}
,

=ea ieb
jec

k
{
∂̃ibjk + βimDmbjk

}
. (D.8)
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Ωa
b
c =Ea

M∂ME
bNEcN ,

=Ea
m∂mE

bnEcn + Eam∂̃
mEbnEcn + Ea

m∂mE
b
nEc

n + Eam∂̃
mEb

nEc
n,

=ea
m∂m(eb jβ

jn)(ec
kbkn) + (ea

ibim)∂̃m(eb jβ
jn)(ec

kbkn)

+ ea
m∂m(eb n + eb jβ

jkbkn)ec
n + (ea

ibim)∂̃m(eb n + eb jβ
jkbkn)ec

n,

=ea
m∂me

b
jβ

jnec
kbkn + ea

meb j∂mβ
jnec

kbkn + ea
ibim∂̃

meb jβ
jnec

kbkn

+ ea
ibime

b
j ∂̃

mβjnec
kbkn + ea

m∂me
b
nec

n + ea
m∂me

b
jβ

jkbknec
k

+ ea
meb j∂mβ

jkbknec
n + ea

meb jβ
jk∂mbknec

n + ea
ibim∂̃

meb nec
n

+ ea
ibim∂̃

meb jβ
jkbknec

n + ea
ibime

b
j ∂̃

mβjkbknec
n + ea

ibime
b
jβ

jk∂̃mbknec
n,

=ea
i∂ie

b
jec

j + ea
ibim∂̃

meb jec
j + ea

ieb jβ
jk(∂ibkn + bim∂̃

mbkn)ec
n,

=ea
iDie

b
jec

j + ea
ieb jβ

jkDibknec
n. (D.9)

Thus, fa bc is then obtained as

fa bc =Ωa
bc + Ωc

a
b − Ωb

a
c,

=ea ieb
jec

k
{
∂̃ibjk + βimDmbjk

}
+ ec

iDie
a
jeb

j + ec
iea jβ

jkDibkneb
n

− eb iDie
a
jec

j − eb iea jβjkDibknec
n

=2
(
e[c

iDie
a
jeb]

j
)

+ ea ieb
jec

k
(
∂̃ibjk + βimHmjk

)
. (D.10)

Q-flux

The Q-flux is defined as

Qa
bc = Ωa

bc + Ωbc
a + Ωc

a
b. (D.11)

Therefore, there are two components of ΩABC evaluated since Ωc
a
b = −Ωcb

a

Ωa
bc =Ea

M∂MEbNEc
N ,

=Ea
m∂mEbnEc

n + Eam∂̃
mEbnEc

n + Ea
m∂mE

b
nE

cn + Eam∂̃
mEb

nE
cn,

=ea
m∂m(eb iβ

in)(ec n + ec jβ
jkbkn) + (ea

ibim)∂̃m(eb jβ
jn)(ec n + ec kβ

klbln)

+ ea
m∂m(eb n + eb iβ

ijbjn)(ec kβ
kn) + (ea

ibim)∂̃m(eb n + eb jβ
jkbkn)(ec lβ

ln)
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=ea
m∂me

b
iβ
inec n + ea

m∂me
b
iβ
inec jβ

jkbkn + ea
meb i∂mβ

inec n

+ ea
meb i∂mβ

inec jβ
jkbkn + ea

ibim∂̃
meb jβ

jnec n + ea
ibim∂̃

meb jβ
jnec kβ

klbln

+ ea
ibime

b
j ∂̃

mβjnec n + ea
ibime

b
j ∂̃

mβjnec kβ
klbln + ea

m∂me
b
ne
c
kβ

kn

+ ea
m∂me

b
iβ
ijbjne

c
kβ

kn + ea
meb i∂mβ

ijbjne
c
ke
c
kβ

kn + ea
meb iβ

ij∂mbjne
c
kβ

kn

+ ea
ibim∂̃

meb je
c
lβ
ln + ea

ibim∂̃
meb jβ

jkbkne
c
lβ
ln + ea

ibime
b
j ∂̃

mβjkbkne
c
lβ
ln

+ ea
ibime

b
jβ

jk∂̃mbkne
c
lβ
ln

=ea
ieb je

c
k

(
∂iβ

jk + bim∂̃
mβjk + βjm∂ibmnβ

kn + βjmbil∂̃
lbmnβ

kn
)
,

=ea
ieb je

c
k

(
Diβ

jk + βjmDibmnβ
kn
)
. (D.12)

Ωab
c =EaM∂ME

bNEcN

=Eam∂mE
bnEcn + Ea

m∂̃
mEbnEcn + Eam∂mE

b
nEc

n + Ea
m∂̃

mEb
nEc

n

=(ea iβ
im)∂m(eb jβ

jn)(ec
kbkn) + (ea m + ea iβ

ijbjm)∂̃m(eb kβ
kn)(ec

lbln)

+ (ea iβ
im)∂m(eb ne

b
jβ

jkbkn)ec
n + (ea m + ea iβ

ijbjm)∂̃m(eb ne
b
kβ

kl)ec
n

=ea iβ
im∂me

b
jβ

jnec
kbkn + ea iβ

imeb j∂mβ
jnec

kbkn + ea m∂̃
meb kβ

knec
lbln

+ ea me
b
k∂̃

mβknec
lbln + ea iβ

ijbjm∂̃
meb kβ

knec
lbln + ea iβ

ijbjme
b
k∂̃

mβknea
lbln

+ ea iβ
im∂me

b
nec

n + ea iβ
im∂me

b
jβ

jkbknec
n + ea iβ

imeb j∂mβ
jkbknec

n

+ ea iβ
imeb jβ

jk∂mbknec
n + ea m∂̃

meb nec
n + ea m∂̃

meb kβ
klblnec

n

+ ea me
b
k∂̃

mβklblnec
n + ea me

b
kβ

kl∂̃mblnec
n + ea iβ

ijbjm∂̃
meb nec

n

+ ea iβ
ijbjm∂̃

meb kβ
klblnec

l + ea iβ
ijbjme

b
k∂̃

mβklblnec
n

+ ea iβ
ijbjme

b
kβ

kl∂̃mblnec
n

=ea iec
n
(
∂̃ieb n + βim∂me

b
n + βijbjm∂̃

meb n + βijbjm∂̃
meb kβ

klbln

)
+ ea ie

b
jec

n
(
βimβjk∂mbkn + βjl∂̃ibln

)
,

=ea ie
b
jec

kβjlD̃iblk + ea iec
n
(
D̃ieb n + βijbjm(∂̃meb n + ∂̃meb kβ

klbln)
)
,

(D.13)

where D̃i is defined by

D̃i ≡ ∂̃i + βij∂j. (D.14)
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Thus, the Q-flux is obviously obtained as

Qa
bc =Ωa

bc + Ωc
a
b + Ωbc

a,

=Ωa
bc − Ωbc

a − Ωcb
a,

=ea
ieb je

c
k

(
Diβ

jk + βjmDibmnβ
kn + βklD̃jbli − βjlD̃kbli

)
+ eb jea

i
(
D̃jec i + βjpbpm(∂̃mec i + ∂̃mec kβ

klbli)
)

− ec jea i
(
D̃jeb i + βjpbpm(∂̃meb i + ∂̃mec kβ

klbli)
)
,

=ea
ieb je

c
k

(
Diβ

jk + βjmβknDibmn + 2β[k|lD̃j]bli

)
+ 2ea

i
(
e[b

jD̃
jec] i + e[b

jβ
jpbpm∂̃

mec] i + e[b
jβ

jpbpm∂̃
mec] kβ

klbli

)
. (D.15)

R-flux

The R-flux is defined as

Rabc = 3Ω[abc]. (D.16)

There is only one component of ΩABC calculated for R-flux.

Ωabc =EaM∂ME
bNEc

n,

=Eam∂mE
bnEc

n + Ea
m∂̃

mEbnEc
n + Eam∂mE

b
nE

cn + Ea
m∂̃

mEb
nE

cn,

=(ea iβ
im)∂m(eb jβ

jn)(ec n + ec kβ
klbln)

+ (ea m + ea iβ
ijbjm)∂̃(eb kβ

kn)(ec n + ec lβ
lpbpn)

+ (ea iβ
im)∂m(eb n + eb jβ

jkbkn)(ec lβ
ln)

+ (ea m + ea iβ
ijbjm)∂̃m(eb n + eb kβ

klbln)(ec pβ
pn)

=ea iβ
im∂me

b
jβ

jnec n + ea iβ
imeb j∂mβ

jnec n + ea iβ
im∂me

b
jβ

jnec kβ
klbln

+ ea iβ
imeb j∂mβ

jnec kβ
klbln + ea m∂̃

meb kβ
knec n + ea me

b
k∂̃

mβknec n

+ ea m∂̃
meb kβ

knec lβ
lpbpn + ea me

b
k∂̃

mβknec lβ
lpbpn + ea iβ

ijbjm∂̃
meb kβ

knec n

+ ea iβ
ijbjme

b
k∂̃

mβknec n + ea iβ
ijbjm∂̃

meb kβ
knec lβ

lpbpn

+ ea iβ
ijbjme

b
k∂̃

mβknec lβ
lpbpn + ea iβ

im∂me
b
je
c
lβ
ln + ea iβ

im∂me
b
jβ

jkbkne
c
lβ
ln

+ ea iβ
imbjm∂mβ

jkbkne
c
lβ
ln + ea iβ

imeb jβ
jk∂mbkne

c
lβ
ln + ea m∂̃e

b
ne
c
pβ

pn

+ ea m∂̃
meb kβ

klblne
c
pβ

pn + ea me
b
k∂̃β

klblne
c
pβ

pn + ea me
b
kβ

kl∂̃mblne
c
pβ

pn

+ ea iβ
ijbjm∂̃e

b
ne
c
pβ

pn + ea iβ
ijbjm∂̃

meb kβ
klblne

c
pβ

pn + ea iβ
ijbjme

b
k∂̃

mβklblne
c
pβ

pn
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+ ea iβ
ijbjme

b
kβ

kl∂̃mblne
c
pβ

pn

=ea ie
b
je
c
k

{
∂̃iβjk + βim∂mβ

jk + βilblm∂̃
lβjk + βimβjlβkn∂mbln + βjlβkn∂̃ibln

+βimβjlβknbmp∂̃
bbln

}
=ea ie

b
je
c
k

{
D̃iβjk + βimbml∂̃

lβjk + βimβjlβknDmbln + βjlβkn∂̃ibln

}
. (D.17)

Finally, the R-flux is obtained

Rabc =3Ω[abc],

=3ea ie
b
je
c
k

{
D̃[iβjk] + β[i|mbml∂̃

lβjk] + βimβjlβknD[mbln] + β[jl∂̃iblnβ
k]n
}
,

=3ea ie
b
je
c
k

{
D̃[iβjk] + β[i|mbml∂̃

lβjk] + β[jl∂̃iblnβ
k]n +

1

3
βimβjlβknHmln

}
.

(D.18)
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E. Commutation relation of D̃i

Consider the commutation relation of the derivative D̃i on the dilaton φ̃[
D̃i, D̃j

]
φ̃ =D̃iD̃jφ̃− (i↔ j),

=∂̃i∂̃jφ̃+ ∂̃iβjk∂kφ̃+ βjk∂k∂̃
iφ̃+ βil∂l∂̃

iφ̃

+ βil(∂lβ
jk)∂kφ̃+ βilβjk∂l∂kφ̃− (i↔ j),

=D̃iβjk∂kφ̃+ D̃jβki∂kφ̃. (E.1)

By adding terms

∂̃kβij∂kφ̃+ ∂lβ
ij ∂̃lφ̃, (E.2)

that vanish due to the strong constraint into (E.1) then the commutation relation
becomes[

D̃i, D̃j
]
φ̃ =

(
D̃iβjk + D̃jβki + D̃kβij

)
∂kφ̃+ ∂lβ

ij ∂̃lφ̃− βkl∂lβij∂kφ̃,

=
(
D̃iβjk + D̃jβki + D̃kβij

)
∂kφ̃+ (∂lβ

ij)(∂̃lφ̃+ βlk∂kφ̃). (E.3)

By using the definition of R-flux (5.35) and Q-flux (5.37), the commutation relation
eventually becomes [

D̃i, D̃j
]
φ̃ = Rijk∂kφ̃+Qk

ijD̃kφ̃. (E.4)
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F. The Connection of Winding
Derivative

From the requirement that the covariant derivative on the metric is vanishing,
it gives the metric compatibility as

∇̃ig̃jk = D̃ig̃jk − Γ̌l
ij g̃lk − Γ̌l

ikg̃jl = 0. (F.1)

By redefining indices of (F.1), three equations are obtained

D̃ig̃jk − Γ̌l
ij g̃lk − Γ̌l

ikg̃jl =0, (F.2)

D̃j g̃ki − Γ̌l
jkg̃li − Γ̌l

jig̃kl =0, (F.3)

D̃kg̃ij − Γ̌l
kig̃lj − Γ̌l

ij g̃il =0. (F.4)

By combining (F.2) and (F.4), then subtracting with (F.3), the result is

2g̃jlΓ̌l
(ki) = D̃ig̃jk + D̃kg̃ij − D̃j g̃jl − 2

(
Γ̌l

[ij]g̃lk + Γ̌l
[kj]g̃li

)
. (F.5)

As a result, the symmetric part of this connection is given by

Γ̌k
(ij) =

1

2
g̃km

(
D̃j g̃mi + D̃ig̃jm − D̃mg̃ij

)
− g̃mk

(
Γ̌l

[jm]g̃li + Γ̌l
[im]g̃lj

)
. (F.6)

By defining the Γ̃m
ij such that

Γ̃k
ij =

1

2
g̃km

(
D̃j g̃mi + D̃ig̃jm − D̃mg̃ij

)
, (F.7)

the symmetric part of the connection then becomes

Γ̌k
(ij) = Γ̃k

ij − g̃mk
(
Γ̌l

[jm]g̃li + Γ̌l
[im]g̃lj

)
. (F.8)

The antisymmetric part is given by

Γ̌k
[ij] =

1

2
Qk

ij. (F.9)
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Therefore, the full expression of the connection takes the form

Γ̌k
ij = Γ̃k

ij − 1

2
g̃mk

(
g̃liQl

jm + g̃ljQl
im
)

+
1

2
Qk

ij. (F.10)

In order the prove that the expression (F.10) leads to the non-vanishing part of
the connection such that

∆ξΓ̌k
ij = −D̃i∂kξ

j, (F.11)

let us consider the following pieces. The first one is Qk
ij

δξQk
ij =δξ(∂kβ

ij),

=∂k(δξβ
ij),

=∂k(Lξβ
ij − ∂̃iξj + ∂̃jξi),

=Lξ(∂kβ
ij)− (∂k∂lξ

j)βil − (∂k∂lξ
i)βlj − (∂k∂̃

iξj) + (∂k∂̃
jξi). (F.12)

Therefore, the non-covariant part of Qk
ij is given by

∆ξQk
ij = −D̃i∂kξ

j + D̃j∂kξ
i. (F.13)

The second piece is Γ̃k
jk. However it is easier for considering the gauge trans-

formation of D̃ig̃jk first

δξ(D̃
ig̃jk) =δξ(∂̃

ig̃jk + βil∂lg̃
jk),

=∂̃iδξg̃
jk + (δξβ

il)∂lg̃
jk + βil∂l(δ

ξg̃jk),

=∂̃i(Lξg̃
jk) + (Lξβ

il − ∂̃iξl + ∂̃lξi)∂lg̃
jk + βil∂lLξg̃

jk,

=(∂̃iξl)∂lg̃
jk + ξl∂l∂̃

ig̃jk − (∂̃i∂lξ
j)g̃lk − (∂lξ

k)∂̃ig̃lk − (∂̃i∂lξ
k)g̃jl

− (∂lξ
k)∂̃ig̃jl + Lξβ

il∂lg̃
jk + βil(∂lξ

m)∂mg̃
jk + βilξm∂m∂lg̃

jk

− βil(∂(l∂mξ
j)g̃mk − βil(∂l∂mξk)g̃jm − βil(∂mξk)∂lg̃jm,

=Lξ(∂̃
ig̃jk) + (Lξβ

il)∂lg̃
jk + βilLξ(∂lg̃

jk)

− (∂̃i∂lξ
j)g̃lk − (∂̃i∂lξ

k)g̃jl − βil(∂l∂mξj)g̃mk − βil(∂l∂mξk)g̃jm.
(F.14)

The non-covariant part of D̃ig̃jk takes the form

∆ξ(D̃
ig̃jk) = −g̃mk(D̃i∂mξ

j)− g̃mj(D̃i∂mξ
k). (F.15)
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As a result, the non-covariant part of the connection is then obtained as

∆ξΓ̌k
ij =∆ξΓ̃k

ij − 1

2
g̃mkg̃

li∆ξQl
jm − 1

2
g̃mkg̃

lj∆ξQl
im +

1

2
∆ξQk

ij,

=
1

2

{
−g̃lj(D̃i∂lξ

m)− g̃lm(D̃i∂lξ
j)− g̃li(D̃j∂lξ

m)− g̃lm(D̃j∂lξ
i)

+g̃lj(D̃m∂lξ
i) + g̃li(D̃m∂lξ

j)
}

− 1

2
g̃mkg̃

li(−D̃j∂lξ
m + D̃m∂lξ

j)− 1

2
g̃mkg̃

lj(−D̃i∂lξ
m + D̃m∂lξ

i)

+
1

2
(−D̃i∂kξ

j + D̃j∂kξ
i),

=− D̃i∂kξ
j. (F.16)
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